scispace - formally typeset
Journal ArticleDOI

A review of power battery thermal energy management

Reads0
Chats0
TLDR
In this paper, the development of clean vehicles, including pure electric vehicles (EVs), hybrid vehicles (HEVs), and fuel cell electric vehicle (FCEVs) and high energy power batteries, such as nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and proton exchange membrane fuel cells (PEMFCs), are discussed and compared.
Abstract
This paper reviews the development of clean vehicles, including pure electric vehicles (EVs), hybrid electric vehicles (HEVs) and fuel cell electric vehicles (FCEVs), and high energy power batteries, such as nickel metal hydride (Ni-MH), lithium-ion (Li-ion) and proton exchange membrane fuel cells (PEMFCs). The mathematical models and thermal behavior of the batteries are described. Details of various thermal management techniques, especially the PCMs battery thermal management system and the materials thermal conductivity, are discussed and compared. It is concluded that the EVs, HEVs and FCEVs are effective to reduce GHG and pollutants emission and save energy. At stressful and abuse conditions, especially at high discharge rates and at high operating or ambient temperatures, traditional battery thermal energy management systems, such as air and liquid, may be not meeting the requirements. Pulsating heat pipe may be more effective but needs to be well designed. In addition, progress in developing new high temperature material is very difficult. PCM for battery thermal management is a better selection than others. Nevertheless, thermal conductivity of the PCMs such as paraffin is low and some methods are adopted to enhance the heat transfer of the PCMs. The performance and thermo-mechanical behaviors of the improved PCMs in the battery thermal management system need to be investigated experimentally. And the possibility of the heat collection and recycling needs to be discussed in terms of energy saving and efficient.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Size matters: Why cell size is vital for minimizing cost of air-cooling in battery packs

TL;DR: In this paper, the authors measured the performance of a range of cylindrical cell sizes in a generic battery module and estimated the cost of a fan for air-cooling.
Proceedings ArticleDOI

Thermal studies on battery packs with different geometric configuration of 18650 cells

TL;DR: In this paper, thermal management strategies with different geometrical cell arrangements for a battery pack consisting of 18650 format LiNiMnCo cylindrical cells are studied using Ansys FLUENT for natural convection and forced convection conditions.
Journal ArticleDOI

A facile strategy to upgrade electrochemical performances of LiEuTiO4 by surface modification derived from pyrolysis of urea

TL;DR: In this article, a facile strategy was proposed to improve electrochemical performances of LiEuTiO4 by surface modification via pyrolysis of urea at a rather low temperature of 400°C in N2 atmosphere.
Proceedings ArticleDOI

Modeling and thermal simulation of a PHEV battery module with cylindrical LFP cells

TL;DR: In this paper, the authors focus on the cooling simulation for a PHEV Li-Ion battery and propose a virtual prototyping approach to evaluate the average heat generated by a single cell during working condition.
References
More filters
Journal ArticleDOI

Review on thermal energy storage with phase change materials and applications

TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Journal ArticleDOI

Ageing mechanisms in lithium-ion batteries

TL;DR: In this article, the mechanisms of lithium-ion battery ageing are reviewed and evaluated, and the most promising candidate as the power source for (hybrid) electric vehicles and stationary energy storage.
Journal ArticleDOI

A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)

TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Journal ArticleDOI

A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell

TL;DR: In this article, a mathematical model of the solid polymer-electrolyte fuel cell is presented to investigate factors that limit cell performance and elucidate the mechanism of species transport in the complex network of gas, liquid, and solid phases of the cell.
Related Papers (5)