scispace - formally typeset
Journal ArticleDOI

A spectral element method for fluid dynamics: Laminar flow in a channel expansion

Reads0
Chats0
TLDR
In this article, a spectral element method was proposed for numerical solution of the Navier-Stokes equations, where the computational domain is broken into a series of elements, and the velocity in each element is represented as a highorder Lagrangian interpolant through Chebyshev collocation points.
About
This article is published in Journal of Computational Physics.The article was published on 1984-06-01. It has received 2133 citations till now. The article focuses on the topics: Spectral element method & Spectral method.

read more

Citations
More filters
Journal ArticleDOI

Numerical modeling of mechanical wave propagation

TL;DR: In this paper, the authors present a review of numerical methods that have been developed and are currently used in geophysics (geophysical interpretation, subsoil imaging, development of new methods of exploration), seismology (study of earthquakes, regional and global seismology, accurate calculation of synthetic seismograms), in the development of ultrasonic diagnostics in materials science (non-destructive methods) and medicine (acoustic tomography).
Journal ArticleDOI

A 2-D DNS study of the effects of nozzle geometry, ignition kernel placement and initial turbulence on prechamber ignition

TL;DR: In this paper, a parametric direct numerical simulation study was conducted to investigate the effects of the initial flow field (quiescent or turbulent), nozzle inlet sharpness and width, main chamber composition (lean and stoichiometric), and ignition kernel placement in a two-dimensional prechamber (PC) ignition system.
Journal ArticleDOI

Forward and inverse modelling of post-seismic deformation

TL;DR: In this article, the forward and inverse problems of post-seismic deformation in a self-gravitating, heterogeneous and compressible earth with a variety of linear and nonlinear rheologies are considered.
DissertationDOI

Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies

TL;DR: It is demonstrated that hybrid parallel solutions can be used to significantly extend the strong scalability limit and support greater parallelism, and optimal discretisations are identified, demonstrating that high-order methods are the computationally fastest approach to attain a desired accuracy for this problem.

Analysis of spectral element methods : with application to incompressible flow

TL;DR: A submitted manuscript is the author's version of the article upon submission and before peer-review as discussed by the authors, and the final published version features the final layout of the paper including the volume, issue and page numbers.
References
More filters
MonographDOI

Numerical analysis of spectral methods : theory and applications

TL;DR: Spectral Methods Survey of Approximation Theory Review of Convergence Theory Algebraic Stability Spectral Methods Using Fourier Series Applications of algebraic stability analysis Constant Coefficient Hyperbolic Equations Time Differencing Efficient Implementation of Spectral Method as discussed by the authors.
Journal ArticleDOI

Experimental and Theoretical Investigation of Backward-Facing Step Flow

TL;DR: In this paper, the velocity distribution and reattachment length of a single backward-facing step mounted in a two-dimensional channel were measured using laser-Doppler measurements.
Journal ArticleDOI

Computational and experimental study of a captive annular eddy

TL;DR: In this article, the main flow and the captive eddy between it and the walls are analyzed, and it is concluded that the main role of the eddy is to shape the flow with a rather small energy exchange.
Book

Finite Element Computational Fluid Mechanics

TL;DR: In this paper, a finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics, including turbulence closure and the solution of turbulent flows.
Journal ArticleDOI

Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows

TL;DR: In this article, the authors examined the performance of three steady-state finite difference formulations, namely: (i) the hybrid central/upwind differencing scheme, 2.
Related Papers (5)