scispace - formally typeset
Proceedings ArticleDOI

Adaptive event detection with time-varying poisson processes

Reads0
Chats0
TLDR
The experimental results indicate that the proposed time-varying Poisson model provides a robust and accurate framework for adaptively and autonomously learning how to separate unusual bursty events from traces of normal human activity.
Abstract
Time-series of count data are generated in many different contexts, such as web access logging, freeway traffic monitoring, and security logs associated with buildings. Since this data measures the aggregated behavior of individual human beings, it typically exhibits a periodicity in time on a number of scales (daily, weekly,etc.) that reflects the rhythms of the underlying human activity and makes the data appear non-homogeneous. At the same time, the data is often corrupted by a number of bursty periods of unusual behavior such as building events, traffic accidents, and so forth. The data mining problem of finding and extracting these anomalous events is made difficult by both of these elements. In this paper we describe a framework for unsupervised learning in this context, based on a time-varying Poisson process model that can also account for anomalous events. We show how the parameters of this model can be learned from count time series using statistical estimation techniques. We demonstrate the utility of this model on two datasets for which we have partial ground truth in the form of known events, one from freeway traffic data and another from building access data, and show that the model performs significantly better than a non-probabilistic, threshold-based technique. We also describe how the model can be used to investigate different degrees of periodicity in the data, including systematic day-of-week and time-of-day effects, and make inferences about the detected events (e.g., popularity or level of attendance). Our experimental results indicate that the proposed time-varying Poisson model provides a robust and accurate framework for adaptively and autonomously learning how to separate unusual bursty events from traces of normal human activity.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Anomaly detection: A survey

TL;DR: This survey tries to provide a structured and comprehensive overview of the research on anomaly detection by grouping existing techniques into different categories based on the underlying approach adopted by each technique.
Journal ArticleDOI

Review: A review of novelty detection

TL;DR: This review aims to provide an updated and structured investigation of novelty detection research papers that have appeared in the machine learning literature during the last decade.
Journal ArticleDOI

Predicting Taxi–Passenger Demand Using Streaming Data

TL;DR: A novel methodology for predicting the spatial distribution of taxi-passengers for a short-term time horizon using streaming data and demonstrates that the proposed framework can provide effective insight into the spatiotemporal distribution of Taxi-passenger demand for a 30-min horizon.
Journal ArticleDOI

A Review of Anomaly based Intrusion Detection Systems

TL;DR: The current state of the experiment practice in the field of anomalybased intrusion detection is reviewed and recent studies in this field are surveyed, including summarization study and identification of the drawbacks of formerly surveyed works.
Proceedings ArticleDOI

Network Lasso: Clustering and Optimization in Large Graphs

TL;DR: The network lasso is introduced, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs and an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner.
References
More filters
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Journal ArticleDOI

Sampling-Based Approaches to Calculating Marginal Densities

TL;DR: In this paper, three sampling-based approaches, namely stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm, are compared and contrasted in relation to various joint probability structures frequently encountered in applications.
Journal Article

Sampling-based approaches to calculating marginal densities

TL;DR: Stochastic substitution, the Gibbs sampler, and the sampling-importance-resampling algorithm can be viewed as three alternative sampling- (or Monte Carlo-) based approaches to the calculation of numerical estimates of marginal probability distributions.
Journal ArticleDOI

Marginal Likelihood from the Gibbs Output

TL;DR: This work exploits the fact that the marginal density can be expressed as the prior times the likelihood function over the posterior density, so that Bayes factors for model comparisons can be routinely computed as a by-product of the simulation.
Related Papers (5)