scispace - formally typeset
Journal ArticleDOI

Alzheimer's Disease: Genes, Proteins, and Therapy

Dennis J. Selkoe
- 01 Apr 2001 - 
- Vol. 81, Iss: 2, pp 741-766
TLDR
Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract
Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

read more

Citations
More filters
Journal ArticleDOI

Anesthetic sevoflurane causes neurotoxicity differently in neonatal naïve and Alzheimer disease transgenic mice.

TL;DR: It is shown for the first time that sevoflurane anesthesia induced caspase activation and apoptosis, altered amyloid precursor protein processing, and increased &bgr;-amyloid protein levels in the brain tissues of neonatal mice.
Journal ArticleDOI

Advances in the cellular and molecular biology of the beta-amyloid protein in Alzheimer’s disease

TL;DR: Advances in understanding of APP processing, trafficking, and turnover will pave the way for better drug discovery for the eventual treatment of AD.
Book ChapterDOI

Preparation of amyloid β-protein for structural and functional studies

TL;DR: A biphasic strategy for preparing Abeta for structural and functional studies is discussed, which involves sodium hydroxide pretreatment of synthetic Abeta, followed by size fractionation procedures that produces Abeta solutions that have been used successfully in a variety of in vitro and in vivo experimental systems.
Journal ArticleDOI

Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer's disease

TL;DR: It is shown that extracellular Aβ undergoes phosphorylation by protein kinases at the cell surface and in cerebrospinal fluid of the human brain, which could represent an important molecular mechanism in the pathogenesis of the most common sporadic form of AD.

A vision for the future of genomics research A blueprint for the genomic era.

TL;DR: A blueprint for the genomic era is presented in this article, where the authors propose a framework for the development of a new generation of genomics models based on the idea of "genome sequencing".
References
More filters
Journal ArticleDOI

Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families

TL;DR: The APOE-epsilon 4 allele is associated with the common late onset familial and sporadic forms of Alzheimer9s disease (AD) in 42 families with late onset AD.
Journal ArticleDOI

Notch Signaling: Cell Fate Control and Signal Integration in Development

TL;DR: Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development, providing a general developmental tool to influence organ formation and morphogenesis.
Journal ArticleDOI

Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein

TL;DR: A purified protein derived from the twisted beta-pleated sheet fibrils in cerebrovascular amyloidosis associated with Alzheimer's disease has been isolated and Amino acid sequence analysis and a computer search reveals this protein to have no homology with any protein sequenced thus far.
Journal ArticleDOI

The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor

TL;DR: An apparently full-length complementary DNA clone coding for the A4 polypeptide is isolated and sequenced and suggests that the cerebral amyloid deposited in Alzheimer's disease and aged Down's syndrome is caused by aberrant catabolism of a cell-surface receptor.
Journal ArticleDOI

Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.

TL;DR: A locus segregating with familial Alzheimer's disease (AD) has been mapped to chromosome 21, close to the amyloid precursor protein (APP) gene as discussed by the authors, which suggests that some cases of AD could be caused by mutations in the APP gene.
Related Papers (5)