scispace - formally typeset
Journal ArticleDOI

Alzheimer's Disease: Genes, Proteins, and Therapy

Dennis J. Selkoe
- 01 Apr 2001 - 
- Vol. 81, Iss: 2, pp 741-766
TLDR
Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract
Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

read more

Citations
More filters
Journal ArticleDOI

Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration.

TL;DR: It is shown that the phosphorylation of the APP intracellular domain (AICD) at T668 is essential for its binding to Fe65 and its nuclear translocation and affects the resultant neurotoxicity, possibly mediated through the induction of glycogen synthase kinase 3β and tauosphorylation by enhancing the formation of a ternary complex with Fe65and CP2 transcription factor.
Journal ArticleDOI

Lewy body pathology in Alzheimer's disease.

TL;DR: The observation ofLewy bodies in familial AD cases suggests that like neurofibrillary tangles, the formation of Lewy bodies can be induced by the pathological state caused by Aβ-amyloid over-production.
Journal ArticleDOI

Sphingolipids: critical players in Alzheimer's disease.

TL;DR: The membrane lipid composition could play important roles in trafficking and metabolism of Alzheimer's disease related proteins and sphingolipids emerged to important modulators of biological processes including cell growth, differentiation, and senescence.
Journal ArticleDOI

The integration of neurology, psychiatry, and neuroscience in the 21st century.

TL;DR: The historical basis for the divergence of neurology and psychiatry over the past century is examined and prospects for a rapprochement and potential convergence of the two specialties in the next century are discussed.
Journal ArticleDOI

Dietary Intakes of Vitamin E, Vitamin C, and β-Carotene and Risk of Alzheimer's Disease: A Meta-Analysis

TL;DR: Dietary intakes of the most common three antioxidants can lower the risk of AD, with vitamin E exhibiting the most pronounced protective effects.
References
More filters
Journal ArticleDOI

Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families

TL;DR: The APOE-epsilon 4 allele is associated with the common late onset familial and sporadic forms of Alzheimer9s disease (AD) in 42 families with late onset AD.
Journal ArticleDOI

Notch Signaling: Cell Fate Control and Signal Integration in Development

TL;DR: Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development, providing a general developmental tool to influence organ formation and morphogenesis.
Journal ArticleDOI

Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein

TL;DR: A purified protein derived from the twisted beta-pleated sheet fibrils in cerebrovascular amyloidosis associated with Alzheimer's disease has been isolated and Amino acid sequence analysis and a computer search reveals this protein to have no homology with any protein sequenced thus far.
Journal ArticleDOI

The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor

TL;DR: An apparently full-length complementary DNA clone coding for the A4 polypeptide is isolated and sequenced and suggests that the cerebral amyloid deposited in Alzheimer's disease and aged Down's syndrome is caused by aberrant catabolism of a cell-surface receptor.
Journal ArticleDOI

Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.

TL;DR: A locus segregating with familial Alzheimer's disease (AD) has been mapped to chromosome 21, close to the amyloid precursor protein (APP) gene as discussed by the authors, which suggests that some cases of AD could be caused by mutations in the APP gene.
Related Papers (5)