scispace - formally typeset
Open AccessJournal ArticleDOI

An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox.

TLDR
An adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis that can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task.
Abstract
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment.

read more

Citations
More filters
Journal ArticleDOI

Applications of machine learning to machine fault diagnosis: A review and roadmap

TL;DR: A review and roadmap to systematically cover the development of IFD following the progress of machine learning theories and offer a future perspective is presented.
Journal ArticleDOI

Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges

TL;DR: The focus of this review is to provide in-depth summaries of deep learning methods for mobile and wearable sensor-based human activity recognition, and categorise the studies into generative, discriminative and hybrid methods.
Journal ArticleDOI

Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network

TL;DR: A new deep feature learning method for RUL estimation approach through time frequency representation (TFR) and multiscale convolutional neural network (MSCNN) is presented, which shows enhanced performance in the prediction accuracy.
Journal ArticleDOI

Fault diagnosis of wind turbine based on Long Short-term memory networks

TL;DR: Experimental results on two wind turbine datasets show that the proposed fault diagnosis framework is able to do fault classification effectively from raw time-series signals collected by single or multiple sensors and outperforms state-of-art approaches.
Journal ArticleDOI

Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review

TL;DR: A systemic and pertinent state-of-art review on WT planetary gearbox condition monitoring techniques on the topics of fundamental analysis, signal processing, feature extraction, and fault detection is provided.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Posted Content

Rethinking the Inception Architecture for Computer Vision

TL;DR: This work is exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization.
Related Papers (5)