scispace - formally typeset
Journal ArticleDOI

An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure

Reads0
Chats0
TLDR
Fabrication of intrinsically stretchable nanowire photodetectors based on fully embedded structures that enable excellent stability against repeated stretching, mechanical scratching, and adhesive forces is reported.
Abstract
Fabrication of intrinsically stretchable nanowire photodetectors based on fully embedded structures is reported. A lithographic filtration method is used to integrate different functional layers into the photodetectors, which exhibit excellent stretchability up to 100%. The fully embedded structure enables excellent stability against repeated stretching, mechanical scratching, and adhesive forces.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metal Nanowire Networks: The Next Generation of Transparent Conductors

TL;DR: Practical aspects of processing metal nanowires into high-performance transparent conducting films are discussed, as well as the use of nanowire films in a variety of applications.
Journal ArticleDOI

Nanomaterial‐Enabled Stretchable Conductors: Strategies, Materials and Devices

TL;DR: This review summarizes recent advances in nanomaterial-enabled stretchable conductors (one of the most important components for stretchable electronics) and related stretchable devices (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators), over the past five years.
Journal ArticleDOI

Stretchable and Wearable Electrochromic Devices

TL;DR: The electrochromic devices were successfully implanted onto textile substrates for potential wearable applications and hold the promise for next-generation electronics such as stretchable, wearable, and implantable display applications.
Journal ArticleDOI

Nanomaterial-Enabled Wearable Sensors for Healthcare.

TL;DR: Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review.
Journal ArticleDOI

High-performance stretchable conductive nanocomposites: materials, processes, and device applications

TL;DR: The recent advances in stretchable conductors based on the percolation networks of nanoscale conductive fillers in elastomeric media are summarized and various techniques that are used to reduce the contact resistance between the conductive filler materials are highlighted.
References
More filters
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Journal ArticleDOI

Materials and mechanics for stretchable electronics

TL;DR: Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric substrates, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments, and applications in systems ranging from electronic eyeball cameras to deformable light-emitting displays are described.
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport

TL;DR: In this paper, the capacitance matrix was calculated for different chain lengths using the software package FastCap MIT (1992) and a ligand shell dielectric constant of 3.14 aF.
Journal ArticleDOI

ZnO Nanowire UV Photodetectors with High Internal Gain

TL;DR: Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products higher than approximately 10 GHz, which promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.
Related Papers (5)