scispace - formally typeset
Proceedings ArticleDOI

Argos: practical many-antenna base stations

TLDR
This work presents the design, realization, and evaluation of Argos, the first reported base station architecture that is capable of serving many terminals simultaneously through MUBF with a large number of antennas (M >> 10), and reports an Argos prototype with 64 antennas and capable ofserving 15 clients simultaneously.
Abstract
Multi-user multiple-input multiple-output theory predicts manyfold capacity gains by leveraging many antennas on wireless base stations to serve multiple clients simultaneously through multi-user beamforming (MUBF). However, realizing a base station with a large number antennas is non-trivial, and has yet to be achieved in the real-world. We present the design, realization, and evaluation of Argos, the first reported base station architecture that is capable of serving many terminals simultaneously through MUBF with a large number of antennas (M >> 10). Designed for extreme flexibility and scalability, Argos exploits hierarchical and modular design principles, properly partitions baseband processing, and holistically considers real-time requirements of MUBF. Argos employs a novel, completely distributed, beamforming technique, as well as an internal calibration procedure to enable implicit beamforming with channel estimation cost independent of the number of base station antennas. We report an Argos prototype with 64 antennas and capable of serving 15 clients simultaneously. We experimentally demonstrate that by scaling from 1 to 64 antennas the prototype can achieve up to 6.7 fold capacity gains while using a mere 1/64th of the transmission power.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Massive MIMO for next generation wireless systems

TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Journal ArticleDOI

5G : A tutorial overview of standards, trials, challenges, deployment, and practice

TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Book

Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency

TL;DR: This monograph summarizes many years of research insights in a clear and self-contained way and providest the reader with the necessary knowledge and mathematical toolsto carry out independent research in this area.
Journal ArticleDOI

Joint Spatial Division and Multiplexing—The Large-Scale Array Regime

TL;DR: JSDM achieves significant savings both in the downlink training and in the CSIT uplink feedback, thus making the use of large antenna arrays at the base station potentially suitable also for frequency division duplexing systems, for which uplink/downlink channel reciprocity cannot be exploited.
Journal ArticleDOI

Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation

TL;DR: In this paper, the authors present a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges.
References
More filters
Book

Fundamentals of Wireless Communication

TL;DR: In this paper, the authors propose a multiuser communication architecture for point-to-point wireless networks with additive Gaussian noise detection and estimation in the context of MIMO networks.
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Journal ArticleDOI

Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Journal ArticleDOI

Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems

TL;DR: In this paper, the tradeoff between the energy efficiency and spectral efficiency of a single-antenna system is quantified for a channel model that includes small-scale fading but not large scale fading, and it is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single antenna system.
Posted Content

Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems

TL;DR: It is shown that the use of moderately large antenna arrays can improve the spectral and energy efficiency with orders of magnitude compared to a single-antenna system.
Related Papers (5)