scispace - formally typeset
Open AccessJournal ArticleDOI

Backscatter-NOMA: A Symbiotic System of Cellular and Internet-of-Things Networks

Reads0
Chats0
TLDR
This work derives the expressions of the outage probabilities and the ergodic rates and analyze the corresponding diversity orders and slopes for both backscatter-NOMA and SR systems and provides the numerical results to verify the theoretical analysis and demonstrate the interrelationship between the cellular networks and the IoT networks.
Abstract
Non-orthogonal multiple access (NOMA) is envisioned as a key technology to enhance the spectrum efficiency for 5G cellular networks. Meanwhile, ambient backscatter communication is a promising solution to the Internet of Things (IoT), due to its high spectrum efficiency and power efficiency. In this paper, we are interested in a symbiotic system of cellular and IoT networks and propose a backscatter-NOMA system, which incorporates a downlink NOMA system with a backscatter device (BD). In the proposed system, the base station (BS) transmits information to two cellular users according to the NOMA protocol, while a BD transmits its information over the BS signals to one cellular user using the passive radio technology. In particular, if the BS only serves the cellular user that decodes BD information, the backscatter-NOMA system turns into a symbiotic radio (SR) system. We derive the expressions of the outage probabilities and the ergodic rates and analyze the corresponding diversity orders and slopes for both backscatter-NOMA and SR systems. Finally, we provide the numerical results to verify the theoretical analysis and demonstrate the interrelationship between the cellular networks and the IoT networks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts

TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

Large Intelligent Surface/Antennas (LISA): Making Reflective Radios Smart

TL;DR: The reflective radio basics, including backscattering principles, backscatter communication, and reflective relay, and the fundamentals and implementations of LISA technology are introduced.
Journal ArticleDOI

A Survey of Rate-Optimal Power Domain NOMA With Enabling Technologies of Future Wireless Networks

TL;DR: This paper surveys the different rate optimization scenarios studied in the literature when PD-NOMA is combined with one or more of the candidate schemes and technologies for B5G networks including multiple-input-single-output (MISO), multiple- input-multiple- Output (MIMO), massive-MIMo), advanced antenna architectures, higher frequency millimeter-wave (mmWave) and terahertz (THz) communications.
Journal ArticleDOI

6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence

TL;DR: 6G is envisioned to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things (IoT), and artificial intelligence (AI), and key technologies to realize each aspect are reviewed.
Journal ArticleDOI

A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

TL;DR: In this paper, the authors shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing and energy, from its core to its end nodes.
References
More filters
Journal ArticleDOI

Cooperative diversity in wireless networks: Efficient protocols and outage behavior

TL;DR: Using distributed antennas, this work develops and analyzes low-complexity cooperative diversity protocols that combat fading induced by multipath propagation in wireless networks and develops performance characterizations in terms of outage events and associated outage probabilities, which measure robustness of the transmissions to fading.
Journal ArticleDOI

What Will 5G Be

TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Journal ArticleDOI

On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

TL;DR: In this letter, the performance of non-orthogonal multiple access (NOMA) is investigated in a cellular downlink scenario with randomly deployed users and developed analytical results show that NOMA can achieve superior performance in terms of ergodic sum rates; however, the outage performance of N OMA depends critically on the choices of the users' targeted data rates and allocated power.
Posted Content

A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends

TL;DR: In this paper, the authors provide an overview of the latest NOMA research and innovations as well as their applications in 5G wireless networks and discuss future research challenges regarding 5G and beyond.
Proceedings ArticleDOI

Ambient backscatter: wireless communication out of thin air

TL;DR: The design of a communication system that enables two devices to communicate using ambient RF as the only source of power is presented, enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.
Related Papers (5)