Author
Wei Hong
Other affiliations: University of California, Santa Cruz, Université de Montréal
Bio: Wei Hong is an academic researcher from Southeast University. The author has contributed to research in topics: Antenna (radio) & Wideband. The author has an hindex of 70, co-authored 906 publications receiving 18353 citations. Previous affiliations of Wei Hong include University of California, Santa Cruz & Université de Montréal.
Papers published on a yearly basis
Papers
More filters
Southeast University1, ShanghaiTech University2, Beijing University of Posts and Telecommunications3, University of Electronic Science and Technology of China4, China Mobile Research Institute5, University of Southampton6, University of Waterloo7, University of Technology, Sydney8, University of Manchester9, University of Edinburgh10, Huawei11, Linköping University12, Queen's University Belfast13, Georgia Institute of Technology14, University of Surrey15, Princeton University16, Dresden University of Technology17
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
935 citations
TL;DR: This paper provides an overview of the existing multibeam antenna technologies which include the passiveMultibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeams phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures.
Abstract: With the demanding system requirements for the fifth-generation (5G) wireless communications and the severe spectrum shortage at conventional cellular frequencies, multibeam antenna systems operating in the millimeter-wave frequency bands have attracted a lot of research interest and have been actively investigated. They represent the key antenna technology for supporting a high data transmission rate, an improved signal-to-interference-plus-noise ratio, an increased spectral and energy efficiency, and versatile beam shaping, thereby holding a great promise in serving as the critical infrastructure for enabling beamforming and massive multiple-input multiple-output (MIMO) that boost the 5G. This paper provides an overview of the existing multibeam antenna technologies which include the passive multibeam antennas (MBAs) based on quasi-optical components and beamforming circuits, multibeam phased-array antennas enabled by various phase-shifting methods, and digital MBAs with different system architectures. Specifically, their principles of operation, design, and implementation, as well as a number of illustrative application examples are reviewed. Finally, the suitability of these MBAs for the future 5G massive MIMO wireless systems as well as the associated challenges is discussed.
737 citations
TL;DR: By etching longitudinal slots on the top metallic surface of the substrate integrated waveguide (SIW), an integrated slot-array antenna is proposed in this article, which takes the advantage of small size, low profile, and low cost, etc.
Abstract: By etching longitudinal slots on the top metallic surface of the substrate integrated waveguide (SIW), an integrated slot-array antenna is proposed in this letter. The whole antenna and feeding system are fabricated on a single substrate, which takes the advantage of small size, low profile, and low cost, etc. The design process and experimental results of a four-by-four SIW slot array antenna at X-band are presented.
498 citations
01 Sep 2006
TL;DR: In this article, a new guided wave structure of half mode substrate integrated waveguide (HMSIW) for microwave and millimeter wave application is proposed for the first time.
Abstract: In this paper, a new guided wave structure of half mode substrate integrated waveguide (HMSIW) for microwave and millimeter wave application is proposed for the first time. The principle of the HMSIW is described, and its propagation characteristics are simulated and measured. The measured results at microwave and millimeter wave bands show that the attenuation of it is less than that of conventional microstrip and even SIW, but its size is nearly half of a SIW. Thus, we can further compress the size of a microwave or millimeter wave integrated circuit based on this new guided wave structure.
380 citations
TL;DR: In this article, the propagation properties of the halfmode substrate integrated waveguide (HMSIW) were studied theoretically and experimentally in the frequency range of 20-60 GHz.
Abstract: The propagation properties of the half-mode substrate integrated waveguide (HMSIW) are studied theoretically and experimentally in this paper. Two equivalent models of the HMSIW are introduced. With the first model, equations are derived to approximate the field distribution inside and outside the HMSIW. Using the second model, an approximate closed-form expression is deduced for calculating the equivalent width of an HMSIW that takes into account the effect of the fringing fields. The obtained design formulas are validated by simulations and experiments. Furthermore, the attenuation characteristics of the HMSIW are studied using the multiline method in the frequency range of 20-60 GHz. A numerical investigation is carried out to distinguish between the contributions of the conductive, dielectric, and radiation losses. As a validation, the measured attenuation constant of a fabricated HMSIW prototype is presented and compared with that of a microstrip (MS) line and a substrate integrated waveguide (SIW). The SIW is designed with the same cutoff frequency and fabricated on the same substrate as the HMSIW. The experimental results show that the HMSIW can be less lossy than the MS line and the SIW at frequencies above 40 GHz.
342 citations
Cited by
More filters
Proceedings Article•
[...]
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
2,722 citations
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.
2,624 citations
17 Jan 2005
TL;DR: In this article, a numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure.
Abstract: The substrate integrated waveguide (SIW) technique makes it possible that a complete circuit including planar circuitry, transitions, and rectangular waveguides are fabricated in planar form using a standard printed circuit board or other planar processing techniques. In this paper, guided wave and modes characteristics of such an SIW periodic structure are studied in detail for the first time. A numerical multimode calibration procedure is proposed and developed with a commercial software package on the basis of a full-wave finite-element method for the accurate extraction of complex propagation constants of the SIW structure. Two different lengths of the SIW are numerically simulated under multimode excitation. By means of our proposed technique, the complex propagation constant of each SIW mode can accurately be extracted and the electromagnetic bandstop phenomena of periodic structures are also investigated. Experiments are made to validate our proposed technique. Simple design rules are provided and discussed.
1,356 citations
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.
1,129 citations