scispace - formally typeset
Open AccessJournal ArticleDOI

Breaking the delay-bandwidth limit in a photonic structure

Qianfan Xu, +2 more
- 01 Jun 2007 - 
- Vol. 3, Iss: 6, pp 406-410
Reads0
Chats0
TLDR
In this paper, the authors reported the first demonstration of storing light using photonic structures on-chip, with storage times longer than the bandwidth-determined photon lifetime of the static device.
Abstract
Storing light on-chip, which requires that the speed of light be significantly slowed down, is crucial for enabling photonic circuits on-chip. Ultraslow propagation1,2,3 and even stopping4,5 of light have been demonstrated using the electromagnetically induced transparency effect in atomic systems1,3,4,5 and the coherent population oscillation effect in solid-state systems2. The wavelengths and bandwidths of light in such devices are tightly constrained by the property of the material absorption lines, which limits their application in information technologies. Various slow-light devices based on photonic structures have also been demonstrated6,7,8,9,10; however, these devices suffer a fundamental trade-off between the transmission bandwidth and the optical delay. It has been shown theoretically11,12,13 that stopping light on-chip and thereby breaking the fundamental link between the delay and the bandwidth can be achieved by ultrafast tuning of photonic structures. Using this mechanism, here we report the first demonstration of storing light using photonic structures on-chip, with storage times longer than the bandwidth-determined photon lifetime of the static device. The release time of the pulse is externally controlled.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Slow light in photonic crystals

TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Journal ArticleDOI

Manipulating light with strongly modulated photonic crystals

TL;DR: In this paper, the authors describe the way in which strongly modulated photonic crystals differ from other optical media, and clarify what they can do, including light confinement, frequency dispersion and spatial dispersion.
Journal ArticleDOI

Stored Light in an Optical Fiber via Stimulated Brillouin Scattering

TL;DR: In this article, the authors describe a method for storing sequences of optical data pulses by converting them into long-lived acoustic excitations in an optical fiber through the process of stimulated Brillouin scattering.
Journal ArticleDOI

Enhancement of light extraction from light emitting diodes

TL;DR: In this paper, the authors reviewed approaches to enhanced light extraction grouped into two sets depending on whether their application results in the change in the spontaneous emission rate or the angular distribution, or both.
Journal ArticleDOI

Slowing and stopping light using an optomechanical crystal array

TL;DR: In this article, an optical waveguide coupled to an optomechanical crystal array is proposed to store and retrieve optical information in a rapidly tunable manner, where light in the waveguide can be dynamically and coherently transferred into long-lived mechanical vibrations of the array.
References
More filters
Journal ArticleDOI

Light speed reduction to 17 metres per second in an ultracold atomic gas

TL;DR: In this paper, an experimental demonstration of electromagnetically induced transparency in an ultracold gas of sodium atoms, in which the optical pulses propagate at twenty million times slower than the speed of light in a vacuum, is presented.
Journal ArticleDOI

Electrooptical effects in silicon

TL;DR: In this article, a numerical Kramers-Kronig analysis is used to predict the refractive index perturbations produced in crystalline silicon by applied electric fields or by charge carriers.
Journal ArticleDOI

Micrometre-scale silicon electro-optic modulator

TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Journal ArticleDOI

Observation of coherent optical information storage in an atomic medium using halted light pulses

TL;DR: A theoretical model is presented that reveals that the system is self-adjusting to minimize dissipative loss during the ‘read’ and ‘write’ operations, anticipating applications of this phenomenon for quantum information processing.
Journal ArticleDOI

Storage of light in atomic vapor.

TL;DR: An experiment is reported in which a light pulse is effectively decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand.
Related Papers (5)