scispace - formally typeset
Journal ArticleDOI

Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range

TLDR
In this article, a modified version of the Bethe equation for inelastic electron scattering in matter has been used to estimate IMFPs in the 50-2000 eV range.
Abstract
We report calculations of electron inelastic mean free paths (IMFPs) for 50–2000 eV electrons in a group of 27 elements (C, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Ta, W, Re, Os, Ir, Pt, Au and Bi). This work extends our previous calculations (Surf. Interface Anal. 11, 57 (1988)) for the 200–2000 eV range. Substantial variations were found in the shapes of the IMFP versus energy curves from element to element over the 50–2000 eV range and we attribute these variations to the different inelastic scattering properties of each material. Our calculated IMFPs wee fitted to a modified form of the Bethe equation for inelastic electron scattering in matter; this equation has four parameters. These four parameters could be empirically related to several material parameters for our group of elements (atomic weight, bulk density and number of valence electron per atom). IMFPs and those initially calculated was 13%. The modified Bethe equation and our expressions for the four parameters can therefore be used to estimate IMFPs in other materials. The uncertainties in the algorithm used for our IMFP calculation are difficult to estimate but are believed to be largely systematic. Since the same algorithm has been used for calculating IMFPs, our predictive IMFP formula is considered to be particularly useful for predicting the IMFP dependence on energy in the 50–2000 eV range and the material dependence for a given energy.

read more

Citations
More filters
Journal ArticleDOI

Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics.

TL;DR: In this paper, ultrathin epitaxial graphite films were grown by thermal decomposition on the (0001) surface of 6H−SiC, and characterized by surface science techniques.
Journal ArticleDOI

Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50–2000 eV range

TL;DR: In this article, the electron inelastic mean free paths (IMFPs) of 14 organic compounds were computed for a group of 14 compounds: 26-n-paraffin, adenine, β-carotene, bovine plasma albumin, deoxyribonucleic acid, diphenylhexatriene, guanine, kapton, polyacetylene, poly(butene-1-sulfone), polyethylene, polymethylmethacrylate, polystyrene and poly(2-vinyl
Journal ArticleDOI

Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage

TL;DR: It is found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed and can store a specific energy of 41 watt-hours per kilogram (19.5 watt- hours per liter).
Journal ArticleDOI

Attosecond spectroscopy in condensed matter

TL;DR: The ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten is demonstrated and illustrates thatAttosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attose Cond timescale in condensed-matter systems and on surfaces.
Journal ArticleDOI

Epitaxial graphene

TL;DR: Graphene multilayers are grown epitaxially on single crystal silicon carbide as discussed by the authors, which is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped Unlike graphite the charge carriers show Dirac particle properties (i.e., an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies).
References
More filters
Journal ArticleDOI

Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids

TL;DR: In this paper, a compilation of all published measurements of electron inelastic mean free path lengths in solids for energies in the range 0-10 000 eV above the Fermi level is presented.
Journal ArticleDOI

Plasma Losses by Fast Electrons in Thin Films

TL;DR: In this paper, the angle energy distribution of a fast electron losing energy to conduction electrons in a thick metallic foil has been derived assuming that the conduction electron constitute a Fermi-Dirac gas and that the fast electron undergoes only small fractional energy and momentum changes.
Book

Elementary excitations in solids

David Pines
TL;DR: In this article, the authors describe the behavior of simple metals, rather than the complicated metals, such as the transition metals and the rare earths, and discuss the applications of such simple metals.
Journal ArticleDOI

Inelastic Collisions of Fast Charged Particles with Atoms and Molecules-The Bethe Theory Revisited

TL;DR: In this article, the Bethe theory has been updated with a number of new developments which need to be included in that body of material, such as the ${z}^{3}$ effect and the stopping power for particles at extreme relativistic energies.
Related Papers (5)