scispace - formally typeset
Open AccessProceedings ArticleDOI

Capacity Degradation with Modeling Hardware Impairment in Large Intelligent Surface

Reads0
Chats0
TLDR
In this paper, the authors consider capacity degradations stemming from potential hardware impairments (HWI) of newly proposed Large Intelligent Surface (LIS) systems and derive the effective noise density and the decrement of utility in closed-form.
Abstract
In this paper, we consider capacity degradations stemming from potential hardware impairments (HWI) of newly proposed Large Intelligent Surface (LIS) systems. Without HWI, the utility of surface-area (the first-order derivative of the capacity with respect to surface-area) is shown to be proportional to the inverse of it. With HWI, the capacity as well as the utility of surface-area are both degraded, due to a higher effective noise level caused by the HWI. After first modeling the HWI in a general form, we derive the effective noise density and the decrement of utility in closed-forms. With those the impacts of increasing the surface-area can be clearly seen. One interesting but also natural outcome is that both the capacity and utility can be decreased when increasing the surface-area in the cases with severe HWI. The turning points where the capacity and the utility start to decrease with HWI can be evaluated from the derived formulas for them. Further, we also consider distributed implementations of a LIS system by splitting it into multiple small LIS-Units, where the impacts of HWI can be significantly suppressed due to a smaller surface-area of each unit.

read more

Citations
More filters
Journal ArticleDOI

Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

TL;DR: In this article, the authors developed energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements subject to individual link budget guarantees for the mobile users.
Journal ArticleDOI

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead

TL;DR: Reconfigurable intelligent surfaces (RISs) can be realized in different ways, which include (i) large arrays of inexpensive antennas that are usually spaced half of the wavelength apart; and (ii) metamaterial-based planar or conformal large surfaces whose scattering elements have sizes and inter-distances much smaller than the wavelength.
Posted Content

Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

TL;DR: The adoption of a reconfigurable intelligent surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated and the results show that the proposed RIS-based resource allocation methods are able to provide up to 300% higher energy efficiency in comparison with the use of regular multi-Antenna amplify-and-forward relaying.
Posted Content

Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and Road Ahead.

TL;DR: The emerging research field of RIS-empowered SREs is introduced; the most suitable applications of RISs in wireless networks are overviewed; an electromagnetic-based communication-theoretic framework for analyzing and optimizing metamaterial-based RISs is presented; and the most important research issues to tackle are discussed.
Journal ArticleDOI

Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey

TL;DR: A literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks, and the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems.
References
More filters
Journal ArticleDOI

The Internet of Things: A survey

TL;DR: This survey is directed to those who want to approach this complex discipline and contribute to its development, and finds that still major issues shall be faced by the research community.
Journal ArticleDOI

What Will 5G Be

TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Journal ArticleDOI

Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas

TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Journal ArticleDOI

Massive MIMO for next generation wireless systems

TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Journal ArticleDOI

The internet of things: a survey

TL;DR: The definitions, architecture, fundamental technologies, and applications of IoT are systematically reviewed and the major challenges which need addressing by the research community and corresponding potential solutions are investigated.
Related Papers (5)