scispace - formally typeset
Journal ArticleDOI

Cellulose-based Supercapacitors: Material and Performance Considerations

TLDR
In this paper, a review of energy storage applications involving different forms of cellulose (i.e., cellulose microfibers, nanocellulose fibers, and cellulose nanocrystals) in supercapacitors, with particular emphasis on new trends and performance considerations relevant to these fields is presented.
Abstract
One of the biggest challenges we will face over the next few decades is finding a way to power the future while maintaining strong socioeconomic growth and a clean environment. A transition from the use of fossil fuels to renewable energy sources is expected. Cellulose, the most abundant natural biopolymer on earth, is a unique, sustainable, functional material with exciting properties: it is low-cost and has hierarchical fibrous structures, a high surface area, thermal stability, hydrophilicity, biocompatibility, and mechanical flexibility, which makes it ideal for use in sustainable, flexible energy storage devices. This review focuses on energy storage applications involving different forms of cellulose (i.e., cellulose microfibers, nanocellulose fibers, and cellulose nanocrystals) in supercapacitors, with particular emphasis on new trends and performance considerations relevant to these fields. Recent advances and approaches to obtaining high capacity devices are evaluated and the limitations of cellulose-based systems are discussed. For the first time, a combination of device-specific factors such as electrode structures, mass loadings, areal capacities, and volumetric properties are taken into account, so as to evaluate and compare the energy storage performance and to better assess the merits of cellulose-based materials with respect to real applications.

read more

Citations
More filters
Journal ArticleDOI

Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications

TL;DR: Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material.
Journal ArticleDOI

Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state

TL;DR: Nanocelluloses are natural materials with at least one dimension in the nano-scale as discussed by the authors, which combine important cellulose properties with the features of nanomaterials and open new horizons for materials science and its applications.
Journal ArticleDOI

Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage

TL;DR: A comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage, with the main focus on the integration of nanoCellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nano cellulose to carbon materials.
Journal ArticleDOI

Nanocellulose: From Fundamentals to Advanced Applications

TL;DR: In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

A review of electrode materials for electrochemical supercapacitors

TL;DR: Two important future research directions are indicated and summarized, based on results published in the literature: the development of composite and nanostructured ES materials to overcome the major challenge posed by the low energy density.
Journal ArticleDOI

Cellulose: Fascinating Biopolymer and Sustainable Raw Material

TL;DR: The current knowledge in the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for coatings, films, membranes, building materials, drilling techniques, pharmaceuticals, and foodstuffs are assembled.
Journal ArticleDOI

Cellulose nanomaterials review: structure, properties and nanocomposites

TL;DR: This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them, and summarizes cellulOSE nanoparticles in terms of particle morphology, crystal structure, and properties.
Related Papers (5)