scispace - formally typeset
Journal ArticleDOI

Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance

TLDR
In this paper, a surface plasmon resonance based affinity biosensor comprising of 2S2G (Ge20Ga5Sb10S65) chalcogenide prism, graphene-multilayer and gold as a plasm active metal is proposed for sensing over a broad wavelength range in visible and near infrared regime.
Abstract
Surface plasmon resonance based affinity biosensor comprising of 2S2G (Ge20Ga5Sb10S65) chalcogenide prism, graphene-multilayer and gold as a plasmon active metal is proposed for sensing over a broad wavelength range in visible and near infrared regime. We have investigated and carried out detailed analysis to design high performance affinity biosensor by exploiting the unique optical properties of chalcogenide glass and graphene. The performance of the biosensor has been quantified in terms of sensitivity and detection accuracy. The sensitivity of proposed biosensor increases significantly due to the presence of graphene where as the detection accuracy increases by more than 100% because of high index chalcogenide glass as compared to silica glass. Also, the detection accuracy of the proposed sensor in near IR is 16 times more as compared to that in visible. Adequate values of crucial design parameters have been optimized to achieve the best possible sensing performance over a broad wavelength range.

read more

Citations
More filters
Journal ArticleDOI

Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor

TL;DR: In this paper, a surface plasmon resonance (SPR) biochemical sensor based on the different heterostructures of few-layer black phosphorus (BP) and graphene/transition metal dichalcogenides (TMDCs) was proposed.
Journal ArticleDOI

Plasmons in graphene: Recent progress and applications

TL;DR: Graphene has attracted great interest since it was successfully exfoliated in 2004 as mentioned in this paper, and its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics.
Journal ArticleDOI

Optical Refractive Index Sensors with Plasmonic and Photonic Structures: Promising and Inconvenient Truth

TL;DR: In this paper, the authors focus on optical refractive index (RI) sensors with no fluorescent labeling required, and utilize two parameters to characterize and compare the performance of optical RI sensors: sensitivity to RI change (denoted by symbol SRI) and figure of merit (in short, FoM).
Journal ArticleDOI

Plasmons in graphene: Recent progress and applications

TL;DR: Graphene has attracted great interest since it was successfully exfoliated in 2004 as mentioned in this paper, and its two dimensional nature and superior properties meet the need of surface plasmons and greatly enrich the field of plasmonics.
References
More filters
Book

Surface Plasmons on Smooth and Rough Surfaces and on Gratings

H. Raether
TL;DR: In this article, surface plasmons on smooth surfaces were used for light scattering at rough surfaces without an ATR device, and surface plasmon on gratings for enhanced roughness.
Journal ArticleDOI

Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light

TL;DR: In this paper, it has been shown that the non-radiative mode excited by light can also radiate under certain conditions if they are excited by electrons (grazing incidence of electrons on a rough surface or at normal incidence on a grating).
Journal ArticleDOI

Nanostructured plasmonic sensors.

TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Journal ArticleDOI

Surface plasmon resonance for gas detection and biosensing

TL;DR: The surface plasmon resonance (SPR) is a new optical technique in the field of chemical sensing as discussed by the authors, which can be used for gas detection, together with results from exploratory experiments with relevance to biosensing.
Journal ArticleDOI

A fiber-optic chemical sensor based on surface plasmon resonance

TL;DR: In this paper, a fiber-optic chemical sensor is presented which utilizes surface plasmon resonance excitation, which is fabricated by removing a section of the fiber cladding and symmetrically depositing a thin layer of highly reflecting metal onto the fiber core.
Related Papers (5)