scispace - formally typeset
Open AccessBook

Computational Electrodynamics: The Finite-Difference Time-Domain Method

Allen Taflove
Reads0
Chats0
TLDR
This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract
Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ray Tracing for Radio Propagation Modeling: Principles and Applications

TL;DR: The basic concepts of rays, ray tracing algorithms, and radio propagation modeling using ray tracing methods are reviewed to envision propagation modeling in the near future as an intelligent, accurate, and real-time system in which ray tracing plays an important role.
PatentDOI

Optimal bistable switching in non-linear photonic crystals

TL;DR: An optical bi-stable switch includes a photonic crystal cavity structure, which is used to characterize a bi-stable switch so that optimal control is provided over input and output of the switch as mentioned in this paper.
Journal ArticleDOI

Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles.

TL;DR: Finite-difference time-domain (FDTD) calculations were employed to study the distribution of electric field near the metal monomer and dimer and revealed that the single-molecule fluorescence was enhanced 7-fold and 13-fold on the metal dimer relative to the free Cy5-labeled oligonucleotide in the absence of metal.
Journal ArticleDOI

Microwave imaging via space-time beamforming: experimental investigation of tumor detection in multilayer breast phantoms

TL;DR: In this article, a 3D space-time beamforming system was proposed for detecting malignant breast tumors. But the authors only used a femtoselectric contrast of 1.5 : 1 for a 4-mm synthetic tumor.
Proceedings ArticleDOI

The pochoir stencil compiler

TL;DR: The Pochoir stencil compiler allows a programmer to write a simple specification of a stencil in a domain-specific stencil language embedded in C++ which the Pochir compiler then translates into high-performing Cilk code that employs an efficient parallel cache-oblivious algorithm.