scispace - formally typeset
Open AccessBook

Computational Electrodynamics: The Finite-Difference Time-Domain Method

Allen Taflove
TLDR
This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract
Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications

TL;DR: In this paper, the fabrication, properties, and solar energy applications of highly ordered TiO 2 nanotube arrays made by anodic oxidation of titanium in fluoride-based electrolytes are reviewed.
Journal ArticleDOI

SPEC CPU2006 benchmark descriptions

TL;DR: On August 24, 2006, the Standard Performance Evaluation Corporation (SPEC) announced CPU2006, which replaces CPU2000, and the SPEC CPU benchmarks are widely used in both industry and academia.
Journal ArticleDOI

Plasmon Hybridization in Nanoparticle Dimers

TL;DR: In this paper, the authors apply the plasmon hybridization method to nanoparticle dimers, providing a simple and intuitive description of how the energy and excitation cross sections of dimer plasmons depend on nanoparticle separation.
Journal ArticleDOI

Negative index of refraction in optical metamaterials.

TL;DR: A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, which results from the plasmon resonance in the pairs of nanorod for both the electric and the magnetic components of light.
Journal ArticleDOI

A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide.

TL;DR: The plasmonic photocatalysis will be of use as a high performance photocatalyst in nearly all current applications but will beof particular importance for applications in locations of minimal light exposure.