scispace - formally typeset
Open AccessBook

Computational Electrodynamics: The Finite-Difference Time-Domain Method

Allen Taflove
Reads0
Chats0
TLDR
This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract
Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

read more

Content maybe subject to copyright    Report

Citations
More filters

Computer Models of the Human Body Signature for Sensing Through the Wall Radar Applications

TL;DR: In this article, the authors presented numerical simulations of the human body radar signature, with application to sensing through the wall (STTW) scenarios, using the Finite Difference Time Domain (FDTD) modeling technique to compute the electromagnetic scattering from realistic human body models.
Journal ArticleDOI

EMI from airflow aperture arrays in shielding enclosures-experiments, FDTD, and MoM modeling

TL;DR: In this article, a simple design equation for the relation between aperture size and number and shielding effectiveness is proposed to investigate the mutual coupling between apertures in an infinite conducting plane.
Journal ArticleDOI

Transformations of High-Level Synthesis Codes for High-Performance Computing

TL;DR: A collection of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications, is presented, aiming to establish a common toolbox to guide both performance engineers and compiler engineers in tapping into the performance potential offered by spatial computing architectures using HLS.
Journal ArticleDOI

A new technique for accurate and stable modeling of arbitrarily oriented thin wires in the FDTD method

TL;DR: The accuracy and excellent consistency of the proposed algorithm, which allows arbitrarily located and oriented wires with respect to the Cartesian grid, are demonstrated for dipole and loop antennas with comparisons with the method of moments and experimental data.
Journal ArticleDOI

Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure

TL;DR: An ultracompact high-efficiency polarizing beam splitter that operates over a wide wavelength range and is based on a hybrid photonic crystal and a conventional waveguide structure is proposed.