scispace - formally typeset
Open AccessJournal Article

Condensation on Slippery Asymmetric Bumps

TLDR
A conceptually different design approach is presented—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces.
Abstract
Controlling dropwise condensation is fundamental to water-harvesting systems, desalination, thermal power generation, air conditioning, distillation towers, and numerous other applications. For any of these, it is essential to design surfaces that enable droplets to grow rapidly and to be shed as quickly as possible. However, approaches based on microscale, nanoscale or molecular-scale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach—based on principles derived from Namib desert beetles, cacti, and pitcher plants—that synergistically combines these aspects of condensation and substantially outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle’s bumpy surface geometry in promoting condensation, and using theoretical modelling, we show how to maximize vapour diffusion fluxat the apex of convex millimetric bumps by optimizing the radius of curvature and cross-sectional shape. Integrating this apex geometry with a widening slope, analogous to cactus spines, directly couples facilitated droplet growth with fast directional transport, by creating a free-energy profile that drives the droplet down the slope before its growth rate can decrease. This coupling is further enhanced by a slippery, pitcher-plant-inspired nanocoating that facilitates feedback between coalescence-driven growth and capillary-driven motion on the way down. Bumps that are rationally designed to integrate these mechanisms are able to grow and transport large droplets even against gravity and overcome the effect of an unfavourable temperature gradient. We further observe an unprecedented sixfold-higher exponent of growth rate, faster onset, higher steady-state turnover rate, and a greater volume of water collected compared to other surfaces. We envision that this fundamental understanding and rational design strategy can be applied to a wide range of water-harvesting and phase-change heat-transfer applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Tuning Superhydrophobic Nanostructures to Enhance Jumping-Droplet Condensation

TL;DR: It is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping-droplet condensers for heat transfer, antifogging, and antifrosting applications.
Journal ArticleDOI

Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting

TL;DR: In this article , an asymmetric amphiphilic surface incorporating self-driven triboelectric adsorption was developed to obtain clean water from the atmosphere, inspired by cactus spines and beetle elytra.
Journal ArticleDOI

Wetting Ridge‐Guided Directional Water Self‐Transport

TL;DR: In this paper , a lubricant-infused heterogeneous superwettability surface (LIHSS) for directional water self-transport is proposed on polyimide (PI) film through femtosecond laser direct writing and lubricant infusion.
Journal ArticleDOI

Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective

TL;DR: The fundamental and specific mechanisms of fog harvesting involving the Namib Desert beetle, spider silk, cactus, and Nepenthes alata are described in detail, and a critical analysis of current challenges and future development is presented.
Journal ArticleDOI

A new one-step approach for the fabrication of microgrooves on Inconel 718 surface with microporous structure and nanoparticles having ultrahigh adhesion and anisotropic wettability: Laser belt processing

TL;DR: In this article , a laser belt processing method was proposed for the preparation of Inconel 718 surfaces with ultra-high adhesion and anisotropic wettability, and the results showed that the width and depth of the microgroove increased with increasing laser power and processing times, whereas the depth decreased when the processing times was increased by eight times.
References
More filters
Journal ArticleDOI

Recent progress in beetle-inspired superhydrophilic-superhydrophobic micropatterned water-collection materials.

TL;DR: The water-harvesting mechanisms of a genus of Namib Desert beetle, Stenocarpa, consisting of the theory of wetting and transporting are described and the methods for fabricating superhydrophilic-superhydrophobic patterns are described.
Journal ArticleDOI

A facile, clean construction of biphilic surface on filter paper via atmospheric air plasma for highly efficient separation of water-in-oil emulsions

TL;DR: In this paper, a novel method to prepare durable biphilic surface on cellulose filter paper by atmospheric air plasma treatment is reported, which can be used to prepare filtering materials for highly efficient separation of water-in-oil emulsions.
Journal ArticleDOI

Evaporation mediated translation and encapsulation of an aqueous droplet atop a viscoelastic liquid film.

TL;DR: The physics of the hitherto unreported phenomena is explained via the development of a semi-analytical model, considering all the relevant forces, and it is postulate that this symbiotic and self-sustained dynamics would pave the path towards the comprehension of micro-swimmers and surface encapsulation.
Journal ArticleDOI

An experimental study on the heat transfer and wettability characteristics of micro-structured surfaces during water vapor condensation under different pressure conditions

TL;DR: In this article, a set of surfaces has been manufactured over copper substrates with one sample used as unstructured (smooth) reference surface and two micro-structured surfaces with longitudinal grooves having V-shape and square cross-sections.