scispace - formally typeset
Open AccessJournal ArticleDOI

Conformal invariance and shape-dependent conductance of graphene samples

Reads0
Chats0
TLDR
In this article, a conducting rectangle is combined with the semicircle model for transport coefficients to analyze the properties of the graphene monolayer and bilayer samples in the quantized Hall regime.
Abstract
For a sample of an arbitrary shape, the dependence of its conductance on the longitudinal and Hall conductivity is identical to that of a rectangle. We use analytic results for a conducting rectangle, combined with the semicircle model for transport coefficients, to analyze the properties of the graphene monolayer and bilayer samples in the quantized Hall regime. A conductance plateau centered at the neutrality point, predicted for square geometry, is in agreement with recent experiments. For rectangular geometry, the conductance exhibits maxima at the densities of compressible quantum Hall states for wide samples and minima for narrow samples. The positions and relative sizes of these features are different in the monolayer and bilayer cases, indicating that the conductance can be used as a tool for sample diagnostic.

read more

Citations
More filters
Journal ArticleDOI

Electronic transport in two-dimensional graphene

TL;DR: In this paper, a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures is provided.
Journal ArticleDOI

Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene

TL;DR: The quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence and it is believed that these results will open the door to the physics of FQHE and other collective behaviour in graphene.
Journal ArticleDOI

Observation of the fractional quantum Hall effect in graphene

TL;DR: The observation of the fractional quantum Hall effect in ultraclean, suspended graphene is reported and it is shown that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap.
Journal ArticleDOI

Electronic properties of graphene in a strong magnetic field

TL;DR: In this paper, the basic aspects of electrons in graphene (two-dimensional graphite) exposed to a strong perpendicular magnetic field are reviewed, and the role of electron-electron interactions both in the weak coupling limit, where the electron-hole excitations are determined by collective modes, and in the strong coupling regime of partially filled relativistic Landau levels, where exotic ferromagnetic phases and incompressible quantum liquids are expected to be at the origin of recently observed (fractional) quantum Hall states.
Journal Article

Observation of the fractional quantum Hall effect in graphene

TL;DR: In this article, the fractional quantum Hall effect (FQHE) is observed in suspended sheets of graphene, probed in a two-terminal measurement setup, and it is shown that at low carrier density, graphene becomes an insulator with a magnetic-field-tunable energy gap.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Related Papers (5)