scispace - formally typeset
Open AccessJournal ArticleDOI

Cost-Sensitive Learning of Deep Feature Representations From Imbalanced Data

Reads0
Chats0
TLDR
In this article, a cost sensitive deep neural network (CoSen) is proposed to learn robust feature representations for both the majority and minority classes, which jointly optimizes the class-dependent costs and the neural network parameters.
Abstract
Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority classes. In this paper, we propose a cost-sensitive (CoSen) deep neural network, which can automatically learn robust feature representations for both the majority and minority classes. During training, our learning procedure jointly optimizes the class-dependent costs and the neural network parameters. The proposed approach is applicable to both binary and multiclass problems without any modification. Moreover, as opposed to data-level approaches, we do not alter the original data distribution, which results in a lower computational cost during the training process. We report the results of our experiments on six major image classification data sets and show that the proposed approach significantly outperforms the baseline algorithms. Comparisons with popular data sampling techniques and CoSen classifiers demonstrate the superior performance of our proposed method.

read more

Citations
More filters
Journal ArticleDOI

Object Detection With Deep Learning: A Review

TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Proceedings ArticleDOI

Class-Balanced Loss Based on Effective Number of Samples

TL;DR: This work designs a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss and introduces a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point.
Journal ArticleDOI

Survey on deep learning with class imbalance

TL;DR: Examination of existing deep learning techniques for addressing class imbalanced data finds that research in this area is very limited, that most existing work focuses on computer vision tasks with convolutional neural networks, and that the effects of big data are rarely considered.
Journal ArticleDOI

Deep learning for smart manufacturing: Methods and applications

TL;DR: A comprehensive survey of commonly used deep learning algorithms and discusses their applications toward making manufacturing “smart”, including computational methods based on deep learning that aim to improve system performance in manufacturing.
Journal ArticleDOI

SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary

TL;DR: The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered "de facto" standard in the framework of learning from imbalanced data because of its simplicity in the design, as well as its robustness when applied to different type of problems.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Journal ArticleDOI

LIBSVM: A library for support vector machines

TL;DR: Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Related Papers (5)