scispace - formally typeset
Journal ArticleDOI

Current transport in metal-semiconductor barriers

C.R. Crowell, +1 more
- 01 Nov 1966 - 
- Vol. 9, pp 1035-1048
TLDR
In this paper, a theory for calculating the magnitude of majority carrier current flow in metal-semiconductor barriers is developed which incorporates Schottky's diffusion (D) theory and Bethe's thermionic emission (T) theory into a single T-D emission theory, and which includes the effects of the image force.
Abstract
A theory for calculating the magnitude of majority carrier current flow in metal-semiconductor barriers is developed which incorporates Schottky's diffusion (D) theory and Bethe's thermionic emission (T) theory into a single T-D emission theory, and which includes the effects of the image force. A low electric field limit for application of this theory is estimated from consideration of phonon-induced backscattering near the potential energy maximum. A high electric field limit associated with the transition to T-F emission is estimated from calculations of the quantum-mechanical transmission of a Maxwellian distribution of electrons incident on the barrier. The theory predicts a wide range of electric field ≈ 2 × 10 2 to 4 × 10 5 V/cm over which the T-D theory may be applied to metal- n -type Si barriers at 300°K. The corresponding range for metal- n -type GaAs barriers is 9 × 10 3 to 8 × 10 4 V/ at 300°K. The decreased upper limit is due mainly to the smaller electron effective mass in GaAs, the increased lower limit to a small optical-phonon energy and a shorter electron-optical-phonon mean-free path. The theory predicts Richardson constants of 96 and 4.4 A/cm 2 /°K 2 for metal- n -type Si and metal- n -type GaAs barriers respectively. Experimental measurements on both metal-Si and metal-GaAs barriers are in general agreement with the theory. Values of the barrier n [( q / kT )(d V /d ln J )] appreciably greater than unity are predicted for the field-dependent barrier height which occurs when an interface layer of the order of atomic thickness exists between the metal and the semi-conductor. A field dependence of the barrier height is shown to have no first order effect on the derivative of the 1/ C 2 vs. V relationship for the barrier. The intercept of a 1/ C 2 vs. V plot is shown to yield the barrier height extrapolated linearly to zero field in the semiconductor. Experimental evidence for the existence of interface layers in near-ideal Schottky barriers is also presented.

read more

Citations
More filters
Book

Fundamentals of Modern VLSI Devices

Yuan Taur, +1 more
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Journal ArticleDOI

Studies of tunnel MOS diodes, I. Interface effects in silicon Schottky diodes

TL;DR: In this paper, a theoretical and experimental study has been made of silicon Schottky diodes in which the metal and semiconductor are separated by a thin interfacial film.
Journal ArticleDOI

Graphitic carbon nitride based nanocomposites: a review

TL;DR: The enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photoc atalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors.
Journal ArticleDOI

Semiconductor ultraviolet detectors

TL;DR: In this paper, a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described and the current state of the art of different types of semiconductor UV detectors is presented.
References
More filters
Journal ArticleDOI

Surface States and Rectification at a Metal Semi-Conductor Contact

TL;DR: In this article, it was shown that if contact is made with a metal, the difference in work function between metal semi-conductor is compensated by surface states charge, rather than by a space charge as is independent of the metal.
Journal ArticleDOI

Field and thermionic-field emission in Schottky barriers

TL;DR: In this article, the authors derived voltage-current characteristics for field and T-F emission in the forward and reverse regime of Schottky barriers formed on highly doped semiconductors.
Journal ArticleDOI

Surface States and Barrier Height of Metal‐Semiconductor Systems

TL;DR: In this paper, the dependence of the barrier height of metal-semiconductor systems upon the metal work function is derived based on the following assumptions: (1) the contact between the metal and the semiconductor has an interfacial layer of the order of atomic dimensions; it is further assumed that this layer is transparent to electrons with energy greater than the potential barrier but can withstand potential across it.
Journal ArticleDOI

Temperature dependence of avalanche multiplication in semiconductors

TL;DR: In this article, the authors investigated the temperature dependence of the carrier mean free path for optical phonon scattering and the mean energy loss per collision for any operating temperature once the appropriate parameters have been determined.
Journal ArticleDOI

The Richardson constant for thermionic emission in Schottky barrier diodes

TL;DR: In this article, the Richardson equation appropriate to thermionic emission in Schottky barrier diodes is derived for a semiconductor having an energy band with ellipsoidal constant-energy surfaces in momentum space.