scispace - formally typeset
Journal ArticleDOI

Daily High-Resolution-Blended Analyses for Sea Surface Temperature

TLDR
In this paper, two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI), which have a spatial grid resolution of 0.25° and a temporal resolution of 1 day.
Abstract
Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR– AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.

read more

Citations
More filters
Journal ArticleDOI

The NCEP climate forecast system version 2

TL;DR: The second version of the NCEP Climate Forecast System (CFSv2) was made operational at the National Center for Environmental Prediction (NCEP) in 2011 as discussed by the authors.
Journal ArticleDOI

Global warming and recurrent mass bleaching of corals

TL;DR: The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year, suggesting that local protection of reefs affords little or no resistance to extreme heat.
Journal ArticleDOI

Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons

TL;DR: The most recent version of ICOADS (R3.0) has been updated and updated from version 4 to version 5 in this article, with more realistic spatiotemporal variations, better representation of high-latitude SSTs, and ship SST biases calculated relative to more accurate buoy measurements.
References
More filters
Journal ArticleDOI

Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century

TL;DR: HadISST1 as mentioned in this paper replaces the global sea ice and sea surface temperature (GISST) data sets and is a unique combination of monthly globally complete fields of SST and sea ice concentration on a 1° latitude-longitude grid from 1871.
Journal ArticleDOI

An Improved In Situ and Satellite SST Analysis for Climate

TL;DR: A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present as mentioned in this paper.
Journal ArticleDOI

Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation

TL;DR: The new NOAA operational global sea surface temperature (SST) analysis is described in this paper, which uses 7 days of in situ (ship and buoy) and satellite SST.
Journal ArticleDOI

Rotation of principal components

TL;DR: In this paper, simple structure rotation and Procrustes target rotation are examined in the context of meteorological/climatological applications, and six unique ways to decompose a rotated data set in order to maximize the physical interpretability of the rotated results are discussed.
Journal ArticleDOI

Improved Extended Reconstruction of SST (1854–1997)

TL;DR: In this paper, an improved SST reconstruction for the 1854-1997 period is developed, which uses sea ice concentrations to improve the high-latitude SST analysis and a modified historical bias correction for the 1939-41 period.
Related Papers (5)