scispace - formally typeset
Journal ArticleDOI

Defect Engineering toward Atomic Co–Nx–C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries

Cheng Tang, +3 more
- 01 Oct 2017 - 
- Vol. 29, Iss: 37, pp 1703185
TLDR
This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co-Nx -C active sites via defect engineering and provides a new concept and effective methodology for the full utilization ofnanocarbon materials with various structural features and further development of advanced energy materials.
Abstract
Rechargeable flexible solid Zn-air battery, with a high theoretical energy density of 1086 Wh kg−1, is among the most attractive energy technologies for future flexible and wearable electronics; nevertheless, the practical application is greatly hindered by the sluggish oxygen reduction reaction/oxygen evolution reaction (ORR/OER) kinetics on the air electrode. Precious metal-free functionalized carbon materials are widely demonstrated as the most promising candidates, while it still lacks effective synthetic methodology to controllably synthesize carbocatalysts with targeted active sites. This work demonstrates the direct utilization of the intrinsic structural defects in nanocarbon to generate atomically dispersed Co–Nx–C active sites via defect engineering. As-fabricated Co/N/O tri-doped graphene catalysts with highly active sites and hierarchical porous scaffolds exhibit superior ORR/OER bifunctional activities and impressive applications in rechargeable Zn-air batteries. Specifically, when integrated into a rechargeable and flexible solid Zn-air battery, a high open-circuit voltage of 1.44 V, a stable discharge voltage of 1.19 V, and a high energy efficiency of 63% at 1.0 mA cm−2 are achieved even under bending. The defect engineering strategy provides a new concept and effective methodology for the full utilization of nanocarbon materials with various structural features and further development of advanced energy materials.

read more

Citations
More filters
Journal ArticleDOI

Advanced Carbon for Flexible and Wearable Electronics.

TL;DR: The latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed and various carbon materials with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced.
Journal ArticleDOI

From 3D ZIF Nanocrystals to Co-N x /C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries

TL;DR: In this article, an advanced Co-Nx/C nanorod array derived from 3D ZIF nanocrystals with superior electrocatalytic activity and stability toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) compared to commercial Pt/C and IrO2, respectively, is synthesized.
Journal ArticleDOI

Defect Engineering on Electrode Materials for Rechargeable Batteries.

TL;DR: Recent advances regarding defect engineering in electrode materials for rechargeable batteries are systematically summarized, with a special focus on the application of metal-ion batteries, lithium-sulfur batteries, and metal-air batteries.
Journal ArticleDOI

Dendrites in Zn-Based Batteries.

TL;DR: This dendrite issue in Zn anodes, with regard to fundamentals, protection strategies, characterization techniques, and theoretical simulations, is systematically discussed and comprehensively summarized to generate an overview of respective superiorities and limitations of various strategies.
References
More filters
Journal ArticleDOI

Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells

TL;DR: In this paper, the authors used density functional theory (DFT) to demonstrate that the oxygen reduction reaction (ORR) on N-doped graphene is a direct fourelectron pathway, which is consistent with the experimental observations.
Journal ArticleDOI

Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions

TL;DR: The recent development of this concept is reviewed here and a novel principle for the design of oxygen electrocatalysts is proposed and an overview of the defects in carbon-based, metal-free electrocatalysis for ORR and various defects in metal oxides/selenides for OER is provided.
Journal ArticleDOI

Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes

TL;DR: This review focuses on the major obstacle of sluggish kinetics of the cathode in both batteries, and summary the fundamentals and recent advances related to the oxygen catalyst materials, and several future research directions are proposed based on the results achieved.
Journal ArticleDOI

Flexible Energy-Storage Devices: Design Consideration and Recent Progress

TL;DR: This review describes the most recent advances in flexible energy-storage devices, including flexible lithium-ion batteries and flexible supercapacitors, based on carbon materials and a number of composites and flexible micro-supercapacitor.
Journal ArticleDOI

Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives

TL;DR: The reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance.
Related Papers (5)