scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

CGNet: A Light-weight Context Guided Network for Semantic Segmentation

TL;DR: This work proposes a novel Context Guided Network (CGNet), which is a light-weight and efficient network for semantic segmentation, and develops CGNet which captures contextual information in all stages of the network.
Posted Content

Inductive Biases for Deep Learning of Higher-Level Cognition

Anirudh Goyal, +1 more
- 30 Nov 2020 - 
TL;DR: This work considers a larger list of inductive biases that humans and animals exploit, focusing on those which concern mostly higher-level and sequential conscious processing, and suggests they could potentially help build AI systems benefiting from humans' abilities in terms of flexible out-of-distribution and systematic generalization.
Journal ArticleDOI

MFQE 2.0: A New Approach for Multi-Frame Quality Enhancement on Compressed Video

TL;DR: In this paper, a Bidirectional Long Short-Term Memory based detector is developed and a novel Multi-Frame Convolutional Neural Network is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are the input.
Proceedings ArticleDOI

Temporally Distributed Networks for Fast Video Semantic Segmentation

TL;DR: TDNet as mentioned in this paper proposes a temporally distributed network for fast and accurate video semantic segmentation, where features extracted from a certain high-level layer of a deep CNN can be approximated by composing features from several shallower sub-networks.
Proceedings Article

Bag of Tricks for Adversarial Training

TL;DR: This work provides comprehensive evaluations on the effects of basic training tricks and hyperparameter settings for adversarially trained models and provides a reasonable baseline setting and re-implement previous defenses to achieve new state-of-the-art results.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.