scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Neural Architecture Search

TL;DR: An overview of existing work in this field of research is provided and neural architecture search methods are categorized according to three dimensions: search space, search strategy, and performance estimation strategy.
Proceedings ArticleDOI

SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property Prediction

TL;DR: The proposed semi-supervised model named SMILES-BERT, which consists of attention mechanism based Transformer Layer outperforms the state-of-the-art methods on all three datasets, showing the effectiveness of the unsupervised pre-training and great generalization capability of the pre-trained model.
Proceedings ArticleDOI

Lightweight Image Super-Resolution with Information Multi-distillation Network

TL;DR: An adaptive cropping strategy (ACS) is developed to super-resolve block-wise image patches using the same well-trained model and performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time.
Journal ArticleDOI

Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review.

TL;DR: The current state of AD detection using deep learning is reviewed through a systematic literature review of over 100 articles, and the most recent findings and trends are set out.
Book ChapterDOI

Deep Imbalanced Attribute Classification using Visual Attention Aggregation

TL;DR: In this paper, a loss function is introduced to handle class imbalance both at class and at instance level and penalizing attention masks with high prediction variance accounts for the weak supervision of the attention mechanism.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.