scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models.

TL;DR: In this article, Wang et al. evaluate the robustness of CNNs to adversarial examples using multiple robustness metrics, including distortion, success rate and transferability of adversarial samples between 306 pairs of models.
Proceedings Article

Neural Paraphrase Generation with Stacked Residual LSTM Networks

TL;DR: The authors proposed a stacked residual LSTM network for paraphrase generation, which adds residual connections between LSTMs layers for efficient training, and achieved state-of-the-art performance on three different datasets: PPDB, WikiAnswers and MSCOCO.
Posted Content

DeeperGCN: All You Need to Train Deeper GCNs

TL;DR: Extensive experiments on Open Graph Benchmark show DeeperGCN significantly boosts performance over the state-of-the-art on the large scale graph learning tasks of node property prediction and graph property prediction.
Posted Content

Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion

TL;DR: DeepInversion is introduced, a new method for synthesizing images from the image distribution used to train a deep neural network, which optimizes the input while regularizing the distribution of intermediate feature maps using information stored in the batch normalization layers of the teacher.
Journal ArticleDOI

A Brief Survey on Semantic Segmentation with Deep Learning

TL;DR: A brief review of research efforts on deep-learning-based semantic segmentation methods is provided, which categorize the related research according to its supervision level, i.e., fully-supervised methods, weakly- supervised methods and semi-super supervised methods.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.