scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Deep Pyramidal Residual Networks

TL;DR: This research gradually increases the feature map dimension at all units to involve as many locations as possible in the network architecture and proposes a novel residual unit capable of further improving the classification accuracy with the new network architecture.
Journal ArticleDOI

Benchmark Analysis of Representative Deep Neural Network Architectures

TL;DR: An in-depth analysis of the majority of the deep neural networks (DNNs) proposed in the state of the art for image recognition, with a complete view of what solutions have been explored so far and in which research directions are worth exploring in the future.
Journal ArticleDOI

Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data

TL;DR: In this paper, the authors propose sparse ternary compression (STC), a new compression framework that is specifically designed to meet the requirements of the federated learning environment, which extends the existing compression technique of top- $k$ gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates.
Proceedings ArticleDOI

DeepGCNs: Can GCNs Go As Deep As CNNs?

TL;DR: In this article, a very deep GCN architecture is proposed to solve the vanishing gradient problem in point cloud semantic segmentation, which is based on graph convolutional networks (GCNs).
Proceedings ArticleDOI

Exploring Self-Attention for Image Recognition

TL;DR: This work considers two forms of self-attention, pairwise and patchwise, which generalizes standard dot-product attention and is fundamentally a set operator and strictly more powerful than convolution.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.