scispace - formally typeset
Open AccessProceedings ArticleDOI

Densely Connected Convolutional Networks

TLDR
DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Abstract
Recent work has shown that convolutional networks can be substantially deeper, more accurate, and efficient to train if they contain shorter connections between layers close to the input and those close to the output. In this paper, we embrace this observation and introduce the Dense Convolutional Network (DenseNet), which connects each layer to every other layer in a feed-forward fashion. Whereas traditional convolutional networks with L layers have L connections—one between each layer and its subsequent layer—our network has L(L+1)/2 direct connections. For each layer, the feature-maps of all preceding layers are used as inputs, and its own feature-maps are used as inputs into all subsequent layers. DenseNets have several compelling advantages: they alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters. We evaluate our proposed architecture on four highly competitive object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). DenseNets obtain significant improvements over the state-of-the-art on most of them, whilst requiring less memory and computation to achieve high performance. Code and pre-trained models are available at https://github.com/liuzhuang13/DenseNet.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Attention Receptive Pyramid Network for Ship Detection in SAR Images

TL;DR: ARPN is a two-stage detector and designed to improve the performance of detecting multiscale ships in SAR images by enhancing the relationships among nonlocal features and refining information at different feature maps, which illustrates that competitive performance has been achieved by the method in comparison with several CNN-based algorithms.
Proceedings ArticleDOI

Cross-X Learning for Fine-Grained Visual Categorization

TL;DR: Cross-X learning as mentioned in this paper exploits the relationships between different images and between different network layers for robust multi-scale feature learning, which can be easily trained end-to-end and is scalable to large datasets like NABirds.
Posted Content

Revisiting Graph based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach

TL;DR: This paper revisits GCN based CF models from two aspects and proposes a residual network structure that is specifically designed for CF with user-item interaction modeling, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse user- item interaction data.
Book ChapterDOI

Task Driven Generative Modeling for Unsupervised Domain Adaptation: Application to X-ray Image Segmentation

TL;DR: A novel model framework for learning automatic X-ray image parsing from labeled CT scans is proposed and an added module leveraging the pre-trained DI2I to enforce segmentation consistency is introduced.
Journal ArticleDOI

A Survey on Food Computing

TL;DR: This is the first comprehensive survey that targets the study of computing technology for the food area and also offers a collection of research studies and technologies to benefit researchers and practitioners working in different food-related fields.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Related Papers (5)
Trending Questions (1)
How the densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation?

Densely connected structures address the challenges associated with the vanishing-gradient problem and feature propagation by alleviating the vanishing-gradient problem and strengthening feature propagation.