scispace - formally typeset
Journal ArticleDOI

Design and Implementation of a Highly Efficient Three-Level T-Type Converter for Low-Voltage Applications

Mario Schweizer, +1 more
- 01 Feb 2013 - 
- Vol. 28, Iss: 2, pp 899-907
TLDR
The 3LT2C as mentioned in this paper combines the positive aspects of the two-level converter such as low conduction losses, small part count and a simple operation principle with the advantages of the three-level converters such as the low switching losses and superior output voltage quality.
Abstract
The demand for lightweight converters with high control performance and low acoustic noise led to an increase in switching frequencies of hard switched two-level low-voltage 3-phase converters over the last years. For high switching frequencies, converter efficiency suffers and can be kept high only by employing cost intensive switch technology such as SiC diodes or CoolMOS switches; therefore, conventional IGBT technology still prevails. In this paper, the alternative of using three-level converters for low-voltage applications is addressed. The performance and the competitiveness of the three-level T-type converter (3LT2C) is analyzed in detail and underlined with a hardware prototype. The 3LT2 C basically combines the positive aspects of the two-level converter such as low conduction losses, small part count and a simple operation principle with the advantages of the three-level converter such as low switching losses and superior output voltage quality. It is, therefore, considered to be a real alternative to two-level converters for certain low-voltage applications.

read more

Citations
More filters
Proceedings ArticleDOI

A Review of the More Electric Aircraft Power Electronics

TL;DR: This paper is a review on the power electronics systems in both AC and DC power distribution architectures in more electric aircrafts.
Proceedings ArticleDOI

Design of a 250 kW, 1200 V SiC MOSFET-based three-phase inverter by considering a subsystem level design optimization approach

TL;DR: In this article, an approach based on a subsystem optimization approach is presented wherein the power module, the DC and AC bus structures, DC link capacitor bank, and the gate driver controls are discussed for a 16 kg, 250 kW all-SiC three-phase inverter.
Journal ArticleDOI

An Adaptive Control of DPWM for Clamped-Three-Level Photovoltaic Inverters With Unbalanced Neutral-Point Voltage

TL;DR: An adaptive control of DPWM implementable in clamped-three-level inverters with two strings of photovoltaic panels in cascaded connection based on the so-called circuit-level decoupling concept is proposed, able to provide balance line voltage even under unbalanced dc links.
Journal ArticleDOI

Phase Current Reconstructions from DC-Link Currents in Three-Phase Three-Level PWM Inverters

TL;DR: In this paper, the authors proposed a minimum voltage injection method for minimizing the voltage distortion in the dc-link currents in three-phase three-level PWM inverters. But the reconstruction method is executed by the currents sampled on the DC-links, the system encounters current-unmeasurable areas where the dc currents cannot be sampled due to the lack of measurement time according to the PWM status.
References
More filters

A New Neutral-Point-Clamped PWM Inverter

A. Nabae
TL;DR: In this article, a neutral-point-clamped PWM inverter composed of main switching devices which operate as switches for PWM and auxiliary switching devices to clamp the output terminal potential to the neutral point potential has been developed.
Journal ArticleDOI

A New Neutral-Point-Clamped PWM Inverter

TL;DR: The neutral-point-clamped PWM inverter adopting the new PWM technique shows an excellent drive system efficiency, including motor efficiency, and is appropriate for a wide-range variable-speed drive system.
Journal ArticleDOI

Recent Advances and Industrial Applications of Multilevel Converters

TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Journal ArticleDOI

The active NPC converter and its loss-balancing control

TL;DR: A loss-balancing scheme is introduced, enabling a substantially increased output power and an improved performance at zero speed, compared to the conventional NPC VSC.
Journal ArticleDOI

Influence of the modulation method on the conduction and switching losses of a PWM converter system

TL;DR: In this paper, the authors explore the dependency of the conduction losses of a bridge leg of a PWM power converter system with a high pulse rate on the shape of the phase modulation functions.
Related Papers (5)