scispace - formally typeset
Journal ArticleDOI

Directional routing and scheduling for green vehicular delay tolerant networks

Reads0
Chats0
TLDR
A directional routing and scheduling scheme (DRSS) for green vehicle DTNs is presented by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay.
Abstract
The vehicle delay tolerant networks (DTNs) make opportunistic communications by utilizing the mobility of vehicles, where the node makes delay-tolerant based "carry and forward" mechanism to deliver the packets. The routing schemes for vehicle networks are challenging for varied network environment. Most of the existing DTN routing including routing for vehicular DTNs mainly focus on metrics such as delay, hop count and bandwidth, etc. A new focus in green communications is with the goal of saving energy by optimizing network performance and ultimately protecting the natural climate. The energy---efficient communication schemes designed for vehicular networks are imminent because of the pollution, energy consumption and heat dissipation. In this paper, we present a directional routing and scheduling scheme (DRSS) for green vehicle DTNs by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay. Our scheme solves the routing and scheduling problem as a learning process by geographic routing and flow control toward the optimal direction. To speed up the learning process, our scheme uses a hybrid method with forwarding and replication according to traffic pattern. The DRSS algorithm explores the possible strategies, and then exploits the knowledge obtained to adapt its strategy and achieve the desired overall objective when considering the stochastic non-cooperative game in on-line multi-commodity routing situations. The simulation results of a vehicular DTN with predetermined mobility model show DRSS achieves good energy efficiency with learning ability, which can guarantee the delivery ratio within the delay bound.

read more

Citations
More filters
Journal ArticleDOI

Role of Machine Learning in Resource Allocation Strategy over Vehicular Networks: A Survey.

TL;DR: In this article, the authors presented how machine learning is leveraged in the vehicular network resource allocation strategy and provided an analysis of how authors designed their scenarios to orchestrate the resource allocation mechanism.
Journal ArticleDOI

CADMA: collision-avoidance directional medium access for vehicular ad hoc networks

TL;DR: A collision-avoidance directional medium access (CADMA) protocol and infrastructure-utilized clustering method for VANET to support reliable data transfer and simulation results indicate that the CADMA can reduce transmission delays and the collision rate of the broadcasting signal, and have shown that it can be effectively utilized for the VANet systems.
Journal ArticleDOI

Quality of service management for IPTV services support in VANETs: a performance evaluation study

TL;DR: The implementation assures a priority for handling IPTV traffic, such that maximise the usage of VANETs resources, and opens the possibility that loss and delay can be minimised to a degree that could guarantee quality IPTV service delivery among vehicle in a vehicular network system.
Journal ArticleDOI

Analysis of performance parameters for wireless network using switching multiple access control method

TL;DR: In this paper, a switching-based multiple access control model is proposed to improve the data transmission performance of wireless asynchronous transfer mode (ATM) in wireless networks, where three control access is processed; polling, token passing, and reservation algorithms for collision avoidance.
Journal ArticleDOI

Uniform description of interference and load based routing metric for wireless mesh networks

TL;DR: An isotonic routing metric is proposed, called MIL (metric based on uniform description of interference and load), which uniformly describes factors including physical interference, logical intra-flow and inter-flow interference, and node load.
References
More filters
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.

Epidemic routing for partially-connected ad hoc networks

TL;DR: This work introduces Epidemic Routing, where random pair-wise exchanges of messages among mobile hosts ensure eventual message delivery and achieves eventual delivery of 100% of messages with reasonable aggregate resource consumption in a number of interesting scenarios.
Proceedings ArticleDOI

A delay-tolerant network architecture for challenged internets

TL;DR: This work proposes a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources.
Journal ArticleDOI

Mobility increases the capacity of ad hoc wireless networks

TL;DR: The per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery, can be increased dramatically under this assumption, and a form of multiuser diversity via packet relaying is exploited.
Proceedings ArticleDOI

Spray and wait: an efficient routing scheme for intermittently connected mobile networks

TL;DR: A new routing scheme, called Spray and Wait, that "sprays" a number of copies into the network, and then "waits" till one of these nodes meets the destination, which outperforms all existing schemes with respect to both average message delivery delay and number of transmissions per message delivered.
Related Papers (5)