scispace - formally typeset
Journal ArticleDOI

Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs

TLDR
In this paper, the authors quantitatively analyzed the origin of the loss spectrum shape using a photon Green function theory and obtained a very good agreement, thus providing an explanation of the complex physical mechanisms responsible for the observed propagation loss.
Abstract
Detailed propagation loss spectrum measurements for line-defect waveguides in silicon photonic crystal slabs are presented, which show record low loss values $(5\phantom{\rule{0.3em}{0ex}}\mathrm{dB}∕\mathrm{cm})$ and complicated frequency dependence. We quantitatively analyze the origin of the loss spectrum shape using a photon Green function theory and obtain a very good agreement, thus providing an explanation of the complex physical mechanisms responsible for the observed propagation loss. In particular, we demonstrate the influence of out-plane, backward, intermode, and in-plane scattering processes on the observed loss spectra, induced by the structural disorder that occurs during fabrication, and highlight the importance of backward and intermode scattering in these waveguides.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Slow light in photonic crystals

TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Journal ArticleDOI

Binary bat algorithm

TL;DR: The proposed binary bat algorithm (BBA) is able to significantly outperform others on majority of the benchmark functions and there is a real application of the proposed method in optical engineering called optical buffer design that evidence the superior performance of BBA in practice.
Journal ArticleDOI

Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect

TL;DR: In this article, the authors proposed an ultrahigh quality factor (Q) photonic crystal slab nanocavity created by the local width modulation of a line defect, which has an intrinsic Q value of up to 7×107.
Journal ArticleDOI

Manipulating light with strongly modulated photonic crystals

TL;DR: In this paper, the authors describe the way in which strongly modulated photonic crystals differ from other optical media, and clarify what they can do, including light confinement, frequency dispersion and spatial dispersion.
Journal ArticleDOI

Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide.

TL;DR: Experimental measurements indicate a propagation loss as low as 2.1 dB/cm for subwavelength grating waveguide with negligible polarization and wavelength dependent loss, which compares favourably to conventional microphotonic silicon waveguides.
References
More filters
Journal ArticleDOI

Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs

TL;DR: Waveguiding characteristics and group-velocity dispersion of line defects in photonic crystal slabs as a function of defect widths reveal that they can be tuned by controlling the defect width, and the results agree well with theoretical calculations, indicating that light paths with made-to-order dispersion can be designed.
Journal ArticleDOI

Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides

TL;DR: The combination of an efficient two-stage coupling scheme and utilization of ultra-long (up to 2mm) photonic crystal waveguides reduces the uncertainty in determining the loss figure to 3dB/cm.
Journal ArticleDOI

Linear waveguides in photonic-crystal slabs

TL;DR: In this article, a systematic analysis of waveguides in photonic-crystal slabs is presented, and the considerations that must be applied to achieve single-mode guided bands in these systems are discussed.
Related Papers (5)