scispace - formally typeset
Open AccessJournal ArticleDOI

Distinct Representational Structure and Localization for Visual Encoding and Recall during Visual Imagery.

Reads0
Chats0
TLDR
Using ultra-high-field functional magnetic resonance imaging with an item-based visual recall task, an in-depth comparison of encoding and recall along a spectrum of granularity is conducted, suggesting visual recall is not merely a reactivation of encoding patterns, displaying a different representational structure and localization from encoding, despite some overlap.
Abstract: 
During memory recall and visual imagery, reinstatement is thought to occur as an echoing of the neural patterns during encoding. However, the precise information in these recall traces is relatively unknown, with previous work primarily investigating either broad distinctions or specific images, rarely bridging these levels of information. Using ultra-high-field (7T) functional magnetic resonance imaging with an item-based visual recall task, we conducted an in-depth comparison of encoding and recall along a spectrum of granularity, from coarse (scenes, objects) to mid (e.g., natural, manmade scenes) to fine (e.g., living room, cupcake) levels. In the scanner, participants viewed a trial-unique item, and after a distractor task, visually imagined the initial item. During encoding, we observed decodable information at all levels of granularity in category-selective visual cortex. In contrast, information during recall was primarily at the coarse level with fine-level information in some areas; there was no evidence of mid-level information. A closer look revealed segregation between voxels showing the strongest effects during encoding and those during recall, and peaks of encoding-recall similarity extended anterior to category-selective cortex. Collectively, these results suggest visual recall is not merely a reactivation of encoding patterns, displaying a different representational structure and localization from encoding, despite some overlap.

read more

Citations
More filters
Journal ArticleDOI

Quantifying aphantasia through drawing: Those without visual imagery show deficits in object but not spatial memory

TL;DR: A object-specific memory impairment in individuals with aphantasia provides evidence for separate systems in memory that support object versus spatial information and provides an important experimental validation for the existence of a elephantasia as a variation in human imagery experience.
Journal ArticleDOI

A network linking scene perception and spatial memory systems in posterior cerebral cortex.

TL;DR: In this paper, the authors report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations.
Journal ArticleDOI

From Visual Perception to Aesthetic Appeal: Brain Responses to Aesthetically Appealing Natural Landscape Movies.

TL;DR: The authors found that aesthetic appeal is not represented in well-characterized feature-and category-selective regions of visual cortex, rather, the observed activations reflect a local transformation from a feature-based visual representation to a representation of "elemental affect," computed through information-processing mechanisms that detect deviations from an observer's expectations.
Journal ArticleDOI

Shared Representational Formats for Information Maintained in Working Memory and Information Retrieved from Long-Term Memory.

TL;DR: For instance, the authors showed that visual memories were represented in a sensory-like code in both memory tasks across retinotopic regions in occipital and parietal cortex, but in a format that differed from sensory-evoked activity.
Journal ArticleDOI

Perception and memory have distinct spatial tuning properties in human visual cortex

TL;DR: In this paper , the authors leverage population receptive field models to parameterize fMRI activity in human visual cortex during spatial memory retrieval, and demonstrate that this property is well explained by the hierarchical structure of the visual system.
References
More filters
Journal ArticleDOI

The Cognitive Neuroscience of Remembering

TL;DR: This work describes how domain-specific cortical regions are reactivated during vivid remembering and contribute to the contents of a memory, and describes how these regions interact to orchestrate an act of remembering.
Journal ArticleDOI

Where Bottom-up Meets Top-down: Neuronal Interactions during Perception and Imagery

TL;DR: This investigation revealed that neuronal interactions between occipito-temporal, parietal and frontal regions are task- and stimulus-dependent and mediated by content-sensitive forward connections from early visual areas.
Journal ArticleDOI

Cortical Networks Related to Human Use of Tools

TL;DR: This review compares and summarizes results from 64 paradigms published over the past decade that have examined cortical regions associated with tool use skills and tool knowledge and revealed cortical networks in both hemispheres, though with a clear left hemisphere bias.
Journal ArticleDOI

Functional-neuroanatomic correlates of recollection: implications for models of recognition memory.

TL;DR: Results revealed that multiple left prefrontal cortical regions were engaged during attempts to recollect previous contextual details, regardless of the nature of the to-be-recollected details and of source recollection outcome (successful vs unsuccessful).
Journal ArticleDOI

Shared representations for working memory and mental imagery in early visual cortex

TL;DR: The findings suggest that the visual cortex serves as a dynamic "blackboard" that is used during both bottom-up stimulus processing and top-down internal generation of mental content.
Related Papers (5)