scispace - formally typeset
Open AccessJournal Article

Dropout: a simple way to prevent neural networks from overfitting

TLDR
It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.

TL;DR: Using the full spatial resolutions of the input image could enable to learn better specific and prominent features, leading to an improvement in the segmentation performance.
Journal ArticleDOI

Convolutional neural network architectures for predicting DNA–protein binding

TL;DR: In this paper, the authors present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. And they find that adding convolutional kernels to a network is important for motif-based tasks.
Journal ArticleDOI

Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500

TL;DR: In this article, the effectiveness of deep neural networks (DNN), gradient-boosted-trees (GBT), random forests (RAF), and several ensembles of these methods in the context of statistical arbitrage was evaluated.
Journal ArticleDOI

Robust Speech Recognition via Large-Scale Weak Supervision

TL;DR: The capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet are studied, with results that are often competitive with prior fully supervised results but in a zero-shot transfer setting without the need for any fine-tuning.
Proceedings ArticleDOI

Joint Embedding of Words and Labels for Text Classification

TL;DR: This article proposed to view text classification as a label-word joint embedding problem, where each label is embedded in the same space with the word vectors and the attention is learned on a training set of labeled samples to ensure that the relevant words are weighted higher than the irrelevant ones.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)
Trending Questions (3)
¿Qué es el overfitting en machine learning?

Overfitting is mentioned in the paper. It refers to a problem in machine learning where a model performs well on the training data but fails to generalize well to new, unseen data.

How does the number of parameters affect overfitting in deep learning?

The paper does not directly address how the number of parameters affects overfitting in deep learning.

What are the most common methods used to address overfitting in RNN?

The most common method used to address overfitting in RNN is dropout.