scispace - formally typeset
Open AccessJournal Article

Dropout: a simple way to prevent neural networks from overfitting

TLDR
It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE)

TL;DR: Wang et al. as mentioned in this paper proposed a semi-supervised deep learning approach to recover high-resolution (HR) CT images from low resolution (LR) counterparts by enforcing the cycle-consistency in terms of the Wasserstein distance.
Posted Content

Understanding Measures of Uncertainty for Adversarial Example Detection

TL;DR: In this article, failure modes for MC dropout, a widely used approach for estimating uncertainty in deep models, are highlighted, and a proposal to improve the quality of uncertainty estimates using probabilistic model ensembles is made.
Journal ArticleDOI

Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network

TL;DR: A new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework and achieves better performance on one synthetic data set and two benchmark HSI data sets in a number of experimental settings.
Journal ArticleDOI

Deep learning in vision-based static hand gesture recognition

TL;DR: This work proposes applying deep learning to the problem of hand gesture recognition for the whole 24 hand gestures obtained from the Thomas Moeslund's gesture recognition database and shows that more biologically inspired and deep neural networks are capable of learning the complex hand gesture classification task with lower error rates.
Posted Content

Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks

TL;DR: This paper evaluates the importance of different network design choices and hyperparameters for five common linguistic sequence tagging tasks and found, that some parameters, like the pre-trained word embeddings or the last layer of the network, have a large impact on the performance, while other parameters, for example the number of LSTM layers or theNumber of recurrent units, are of minor importance.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)
Trending Questions (3)
¿Qué es el overfitting en machine learning?

Overfitting is mentioned in the paper. It refers to a problem in machine learning where a model performs well on the training data but fails to generalize well to new, unseen data.

How does the number of parameters affect overfitting in deep learning?

The paper does not directly address how the number of parameters affects overfitting in deep learning.

What are the most common methods used to address overfitting in RNN?

The most common method used to address overfitting in RNN is dropout.