scispace - formally typeset
Open AccessJournal Article

Dropout: a simple way to prevent neural networks from overfitting

TLDR
It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Wireless Networks Design in the Era of Deep Learning: Model-Based, AI-Based, or Both?

TL;DR: It will be shown that the data-driven approaches should not replace, but rather complement, traditional design techniques based on mathematical models in future wireless communication networks.
Journal ArticleDOI

3-D Deep Learning Approach for Remote Sensing Image Classification

TL;DR: The aim of this paper is first to explore the performance of DL architectures for the RS hyperspectral data set classification and second to introduce a new 3-D DL approach that enables a joint spectral and spatial information process.
Journal ArticleDOI

Fully Deep Blind Image Quality Predictor

TL;DR: A blind image evaluator based on a convolutional neural network (BIECON) is proposed that follows the FR-IQA behavior using the local quality maps as intermediate targets for conventional neural networks, which leads to NR- IQA prediction accuracy that is comparable with that of state-of-the-art FR-iqA methods.
Journal ArticleDOI

Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study

TL;DR: Evidence that deep learning networks may be used for mortality risk stratification based on standard-of-care CT images from NSCLC patients is provided and the biological basis of the captured phenotypes as being linked to cell cycle and transcriptional processes is presented.
Journal ArticleDOI

Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence

TL;DR: In this article, the authors divide Edge Intelligence into two categories: Intelligence-enabled Edge Computing (IEC) and Artificial Intelligence on Edge (AI on Edge) to provide more optimal solutions to key problems in edge computing with the help of popular and effective AI technologies.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)
Trending Questions (3)
¿Qué es el overfitting en machine learning?

Overfitting is mentioned in the paper. It refers to a problem in machine learning where a model performs well on the training data but fails to generalize well to new, unseen data.

How does the number of parameters affect overfitting in deep learning?

The paper does not directly address how the number of parameters affects overfitting in deep learning.

What are the most common methods used to address overfitting in RNN?

The most common method used to address overfitting in RNN is dropout.