scispace - formally typeset
Open AccessJournal Article

Dropout: a simple way to prevent neural networks from overfitting

TLDR
It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Anticipating Visual Representations from Unlabeled Video

TL;DR: In this article, a framework that capitalizes on temporal structure in unlabeled video to learn to anticipate human actions and objects is presented. But this task is challenging partly because it requires leveraging extensive knowledge of the world that is difficult to write down.
Journal ArticleDOI

Deep Neural Network Based Demand Side Short Term Load Forecasting

TL;DR: This paper proposes deep neural network (DNN)-based load forecasting models and applies them to a demand side empirical load database and shows that DNNs exhibit accurate and robust predictions compared to other forecasting models.
Posted Content

How Powerful are Graph Neural Networks

TL;DR: This work characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures, and develops a simple architecture that is provably the most expressive among the class of GNNs.
Proceedings ArticleDOI

CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

TL;DR: The task and evaluation methodology is defined, how the data sets were prepared, report and analyze the main results, and a brief categorization of the different approaches of the participating systems are provided.
Proceedings ArticleDOI

Semantic Visual Localization

TL;DR: In this paper, a joint 3D geometric and semantic understanding of the world is used for robust visual localization under a wide range of viewing conditions, enabling it to succeed under conditions where previous approaches failed.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)
Trending Questions (3)
¿Qué es el overfitting en machine learning?

Overfitting is mentioned in the paper. It refers to a problem in machine learning where a model performs well on the training data but fails to generalize well to new, unseen data.

How does the number of parameters affect overfitting in deep learning?

The paper does not directly address how the number of parameters affects overfitting in deep learning.

What are the most common methods used to address overfitting in RNN?

The most common method used to address overfitting in RNN is dropout.