scispace - formally typeset
Open AccessJournal Article

Dropout: a simple way to prevent neural networks from overfitting

TLDR
It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Abstract
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem. The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different "thinned" networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights. This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Leveraging uncertainty information from deep neural networks for disease detection.

TL;DR: Drop-out based Bayesian uncertainty measures for DL in diagnosing diabetic retinopathy (DR) from fundus images are evaluated and it is shown that it captures uncertainty better than straightforward alternatives and that uncertainty informed decision referral can improve diagnostic performance.
Journal ArticleDOI

Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images

TL;DR: This paper proposes a method to improve and speed-up the CNN training for medical image analysis tasks by dynamically selecting misclassified negative samples during training using the selective sampling method.
Posted Content

Adversarial Training Methods for Semi-Supervised Text Classification

TL;DR: This work extends adversarial and virtual adversarial training to the text domain by applying perturbations to the word embeddings in a recurrent neural network rather than to the original input itself.
Journal ArticleDOI

Deep generative models of genetic variation capture the effects of mutations.

TL;DR: DeepSequence is an unsupervised deep latent-variable model that predicts the effects of mutations on the basis of evolutionary sequence information that is grounded with biologically motivated priors, reveals the latent organization of sequence families, and can be used to explore new parts of sequence space.
Journal ArticleDOI

Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification

TL;DR: This article proposes an automatic CNN architecture design method by using genetic algorithms, to effectively address the image classification tasks and shows the very comparable classification accuracy to the best one from manually designed and automatic + manually tuning CNNs, while consuming fewer computational resources.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Regression Shrinkage and Selection via the Lasso

TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Dissertation

Learning Multiple Layers of Features from Tiny Images

TL;DR: In this paper, the authors describe how to train a multi-layer generative model of natural images, using a dataset of millions of tiny colour images, described in the next section.
Related Papers (5)
Trending Questions (3)
¿Qué es el overfitting en machine learning?

Overfitting is mentioned in the paper. It refers to a problem in machine learning where a model performs well on the training data but fails to generalize well to new, unseen data.

How does the number of parameters affect overfitting in deep learning?

The paper does not directly address how the number of parameters affects overfitting in deep learning.

What are the most common methods used to address overfitting in RNN?

The most common method used to address overfitting in RNN is dropout.