scispace - formally typeset
Journal ArticleDOI

ECG data compression techniques-a unified approach

TLDR
The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods and a framework for evaluation and comparison of ECG compression schemes is presented.
Abstract
Electrocardiogram (ECG) compression techniques are compared, and a unified view of these techniques is established. ECG data compression schemes are presented in two major groups: direct data compression and transformation methods. The direct data compression techniques are ECG differential pulse code modulation (DPCM) and entropy coding, AZTEC, Turning-point, CORTES, Fan and SAPA algorithms, peak-picking, and cycle-to-cycle compression methods. The transformation methods include Fourier, Walsh, and Karhunen-Loeve transforms. The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods. A framework for evaluation and comparison of ECG compression schemes is presented. >

read more

Citations
More filters
Journal ArticleDOI

ECG compression using long-term prediction

TL;DR: A new algorithm for ECG signal compression is introduced that can be considered a generalization of the recently published average beat subtraction method, and was found superior at any bit rate.
Journal ArticleDOI

An efficient coding algorithm for the compression of ECG signals using the wavelet transform

TL;DR: The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance and the ability of the coding algorithm to compress ECG signals is investigated.
Journal ArticleDOI

ECG Denoising and Compression Using a Modified Extended Kalman Filter Structure

TL;DR: Efficient denoising and lossy compression schemes for electrocardiogram (ECG) signals based on a modified extended Kalman filter (EKF) structure are presented, suitable for a hybrid system that integrates these algorithmic approaches for clean ECG data storage or transmission scenarios with high output SNRs, high CRs, and low distortions.
Journal ArticleDOI

Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform

TL;DR: The present algorithm demonstrated the potential of data fusion to reduce false ECG arrhythmia alarms in a clinical setting, but the non-zero TA reduction rate for ventricular tachycardia indicates the need for further refinement of the suppression strategy.
Journal ArticleDOI

ECG data compression using truncated singular value decomposition

TL;DR: The results showed that truncated SVD method can provide an efficient coding with high-compression ratios and demonstrated the method as an effective technique for ECG data storage or signals transmission.
References
More filters
Journal ArticleDOI

A mathematical theory of communication

TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Journal ArticleDOI

A Method for the Construction of Minimum-Redundancy Codes

TL;DR: A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.
Journal ArticleDOI

Linear prediction: A tutorial review

TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Journal ArticleDOI

Arithmetic coding for data compression

TL;DR: The state of the art in data compression is arithmetic coding, not the better-known Huffman method, which gives greater compression, is faster for adaptive models, and clearly separates the model from the channel encoding.
Proceedings ArticleDOI

Orthogonal transforms for digital signal processing

TL;DR: The utility and effectiveness of these transforms are evaluated in terms of some standard performance criteria such as computational complexity, variance distribution, mean-square error, correlated rms error, rate distortion, data compression, classification error, and digital hardware realization.
Related Papers (5)