scispace - formally typeset
Open AccessJournal ArticleDOI

Effects of neonicotinoids and fipronil on non-target invertebrates

Reads0
Chats0
TLDR
Enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.
Abstract
We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section “other invertebrates” review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large-scale and wide ranging negative biological and ecological impacts on a wide range of non-target invertebrates in terrestrial, aquatic, marine and benthic habitats.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Bee declines driven by combined stress from parasites, pesticides, and lack of flowers

TL;DR: The stresses bees are experiencing from climate change, infectious diseases, and insecticides are reviewed, with concern that the authors may be nearing a “pollination crisis” in which crop yields begin to fall.
Journal ArticleDOI

Environmental fate and exposure; neonicotinoids and fipronil

TL;DR: There is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites, and this provides multiple routes for chronic exposure of nontarget animals.
Journal ArticleDOI

Seed coating with a neonicotinoid insecticide negatively affects wild bees

TL;DR: It is shown that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees, and the contribution of pesticides to the global decline of wild bees may have been underestimated.
References
More filters
Journal ArticleDOI

Importance of pollinators in changing landscapes for world crops

TL;DR: It is found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animalPollination, however, global production volumes give a contrasting perspective.
Journal ArticleDOI

Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture

TL;DR: The rapidly expanding literature on habitat management is reviewed with attention to practices for favoring predators and parasitoids, implementation of habitat management, and the contributions of modeling and ecological theory to this developing area of conservation biological control.
Journal ArticleDOI

The Sublethal Effects of Pesticides on Beneficial Arthropods

TL;DR: The different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, are characterized, and the methods used in these studies are described.
Book

Biology and ecology of earthworms

TL;DR: The role of earthworms in soil structure, fertility and productivity, and the influence of environmental factors on earthworms are described.
Related Papers (5)