scispace - formally typeset
Open AccessJournal ArticleDOI

Efficient luminescent solar cells based on tailored mixed-cation perovskites

TLDR
A new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence is reported on.
Abstract
We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight.

read more

Citations
More filters
Journal ArticleDOI

Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites

TL;DR: In this article, the authors demonstrate that hydrogen vacancies can be present in high densities under iodine-poor conditions in the prototypical hybrid perovskite MAPbI3 (MA,= CH3NH3).
Journal ArticleDOI

In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polymer matrix

TL;DR: An in situ catalyst-free strategy to synthesize inorganic CsPbBr3 perovskite nanorods in a polymer matrix (NRs-PM) with good dimensional control, outstanding optical properties and ultrahigh environmental stability is reported.
Journal ArticleDOI

DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells

TL;DR: This work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also helps further understand the perovSkite-crystallization process.
Journal ArticleDOI

Long-Lived Photoinduced Polarons in Organohalide Perovskites

TL;DR: Continuous wave far-infrared photoinduced absorption experiments on CH3NH3PbI3 perovskite are performed; spectral changes are associated with local deformation of the lattice around the photogenerated long-lived charges, a typical signature of photoinduced polarons.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange

TL;DR: An approach for depositing high-quality FAPbI3 films, involving FAP bI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide is reported.
Related Papers (5)