scispace - formally typeset
Journal ArticleDOI

Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V – A DFT guide for experiments

TLDR
In this article, the authors report the development of new and cost-efficient catalysts, transition metal nitrides, which enable electrochemical reduction of molecular nitrogen to ammonia in aqueous media at ambient conditions with only a low applied bias.
Abstract
A rapid and facile reduction of nitrogen to achieve sustainable and energy-efficient production of ammonia is critical to its use as a hydrogen storage medium, chemical feedstock, and especially for manufacturing inorganic fertilizers. For a decentralization of catalytic ammonia production, small-scale N2 reduction devices are required that are equipped with the most stable, selective, and active catalysts that operate at low temperature and ambient pressure. Here, we report the development of new and cost-efficient catalysts, transition metal nitrides, which enable electrochemical reduction of molecular nitrogen to ammonia in aqueous media at ambient conditions with only a low applied bias. The most promising catalysts are VN, ZrN, NbN, and CrN, which are identified among a range of transition metal nitride surfaces through a comprehensive density functional theory based analysis. All four nitrides are found to be more active toward nitrogen reduction than toward the competing hydrogen evolution reaction...

read more

Citations
More filters
Journal ArticleDOI

A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions

TL;DR: In this paper, the authors summarized the recent progress on the electrochemical nitrogen reduction reaction (NRR) at ambient temperature and pressure from both theoretical and experimental aspects, aiming at extracting instructive perceptions for future NRR research activities.
Journal ArticleDOI

Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat.-1 h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts.

TL;DR: This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single-atom catalysts.
Journal ArticleDOI

Recent Advances and Challenges of Electrocatalytic N2 Reduction to Ammonia.

TL;DR: This review provides a comprehensive account of theoretical and experimental studies on electrochemical nitrogen fixation with a focus on the low selectivity for reduction of N2 to ammonia versus protons to H2.
Journal ArticleDOI

How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully.

TL;DR: This tutorial review summarizes the present status and challenges in the study of ambient electrocatalytic nitrogen reduction, followed by a thorough discussion of various experimental parameters, and recommends a series of protocols and best practices for experiments.
Journal ArticleDOI

Recent progress towards the electrosynthesis of ammonia from sustainable resources

TL;DR: A review of the electrosynthetic ammonia production devices can be found in this paper, where the authors highlight the key remaining challenges in the electro-synthesis of ammonia and summarise the seminal literature in the field.
References
More filters
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

Ab initio molecular dynamics for liquid metals.

TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Journal ArticleDOI

Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium.

TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Related Papers (5)