scispace - formally typeset
Journal ArticleDOI

Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation

Reads0
Chats0
TLDR
With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere, and suggests new kind of approach to enhance stability of perovSKite solar cells to moisture.
Abstract
In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.

read more

Citations
More filters
Journal ArticleDOI

Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics.

TL;DR: Recommendations are made on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.
Journal ArticleDOI

Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers.

TL;DR: It is shown that rapid light–induced free-radical polymerization at ambient temperature produces multifunctional fluorinated photopolymer coatings that confer luminescent and easy-cleaning features on the front side of the devices, while concurrently forming a strongly hydrophobic barrier toward environmental moisture on the back contact side.
Journal ArticleDOI

Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells

TL;DR: The effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells are investigated and the perceived relevance of the different ways these are currently aged is commented on.
Journal ArticleDOI

Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization

TL;DR: This work demonstrates enhanced water and light stability of high-surface-area colloidal perovskite nanocrystals by encapsulation of colloidal CsPbBr3 quantum dots into matched hydrophobic macroscale polymeric matrices, and provides a robust platform for diverse photonic applications.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Sequential deposition as a route to high-performance perovskite-sensitized solar cells

TL;DR: A sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film that greatly increases the reproducibility of their performance and allows the fabrication of solid-state mesoscopic solar cells with unprecedented power conversion efficiencies and high stability.
Journal ArticleDOI

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells

TL;DR: A bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process is reported, providing important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
Journal ArticleDOI

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells

TL;DR: This paper demonstrates highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer.
Related Papers (5)