scispace - formally typeset
Open AccessJournal ArticleDOI

Experimental entanglement of six photons in graph states

Reads0
Chats0
TLDR
In this article, the authors demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states, including the largest photonic Schrodinger cat and a six-photon cluster state.
Abstract
Graph states1,2,3—multipartite entangled states that can be represented by mathematical graphs—are important resources for quantum computation4, quantum error correction3, studies of multiparticle entanglement1 and fundamental tests of non-locality5,6,7 and decoherence8. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states9,10,11. We have created two important examples of graph states, a six-photon Greenberger–Horne–Zeilinger state5, the largest photonic Schrodinger cat so far, and a six-photon cluster state2, a state-of-the-art ‘one-way quantum computer’4. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms4,12 or loss- and fault-tolerant one-way quantum computation13,14.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Quantum entanglement

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Book

Quantum Measurement and Control

TL;DR: In this paper, the authors present a comprehensive treatment of modern quantum measurement and measurement-based quantum control, which are vital elements for realizing quantum technology, including quantum information, quantum metrology, quantum control and related fields.
Journal ArticleDOI

Entanglement detection

TL;DR: In this article, the basic elements of entanglement theory for two or more particles and verification procedures, such as Bell inequalities, entangle witnesses, and spin squeezing inequalities, are discussed.
Journal ArticleDOI

Multiphoton entanglement and interferometry

TL;DR: A review of the progress in photonic quantum information processing can be found in this article, where the emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication, and quantum computation with linear optics.
Journal ArticleDOI

Silica-on-Silicon Waveguide Quantum Circuits

TL;DR: These results show that it is possible to directly “write” sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.
References
More filters
Journal ArticleDOI

Mixed State Entanglement and Quantum Error Correction

TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Journal ArticleDOI

A one-way quantum computer.

TL;DR: A scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states, which are thus one-way quantum computers and the measurements form the program.
Journal ArticleDOI

New high-intensity source of polarization-entangled photon pairs.

TL;DR: Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes.
Journal ArticleDOI

Bell’s theorem without inequalities

TL;DR: In this article, it was shown that the premisses of the Einstein-Podolsky-Rosen paper are inconsistent when applied to quantum systems consisting of at least three particles.
Related Papers (5)