scispace - formally typeset
Journal ArticleDOI

Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications

Reads0
Chats0
TLDR
This review elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms.
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs–bioorganism int...

read more

Citations
More filters
Journal ArticleDOI

Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications

TL;DR: In this paper , the most common dendrons used for biomedical applications are polyamide, polyester, carbosilane, polyether, and glycol-type, which are bonded to biological active molecules (BAMs), or molecular nanoplatforms (MPs) by hydrolysable bonds.
Journal ArticleDOI

Biocompatible cracked reduced graphene oxide strain sensors: Enhancing implantable strain sensing performance and durability

TL;DR: In this article , a soft implantable strain sensor that reliably detects various biomechanical signals in vivo is presented, which is essential electronic devices for advanced biomedical and bioengineering technologies.
Book ChapterDOI

Multifunctional Nanoparticles for Targeting Cancer Nanotheranostics

TL;DR: In this article, the potential of various multifunctional nanostructures widely employed for cancer nanotheranostics is discussed, including the recent advancements of hybrid nanosystems and their versatile functionalities.
Book ChapterDOI

Graphene Nanocomposite-Based Nanoproducts for Renewable Energy Application

TL;DR: In this article , the authors proposed a new approach process for strategic renewable energy based on Graphene nanocomposites, which is a significant solution to world renewable energy difficulties and challenges.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Mussel-Inspired Surface Chemistry for Multifunctional Coatings

TL;DR: Inspired by the composition of adhesive proteins in mussels, dopamine self-polymerization is used to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Journal ArticleDOI

A roadmap for graphene

TL;DR: This work reviews recent progress in graphene research and in the development of production methods, and critically analyse the feasibility of various graphene applications.
Journal ArticleDOI

Roll-to-roll production of 30-inch graphene films for transparent electrodes

TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Related Papers (5)