scispace - formally typeset
Open AccessJournal ArticleDOI

Galactic star formation and accretion histories from matching galaxies to dark matter haloes

Reads0
Chats0
TLDR
In this article, a multi-epoch abundance matching (MEAM) model was proposed to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z � 4 to the present.
Abstract
We present a new statistical method to determine the relationship between the stellar masses of galaxies and the masses of their host dark matter haloes over the entire cosmic history from z � 4 to the present. This multi-epoch abundance matching (MEAM) model self-consistently takes into account that satellite galaxies first become satellites at times earlier than they are observed. We employ a redshift-dependent parameterization of the stellar-to-halo mass relation to populate haloes and subhaloes in the Millennium simulations with galaxies, requiring that the observed stellar mass functions at several redshifts be reproduced simultaneously. We show that physically meaningful growth of massive galaxies is consistent with these data only if observational mass errors are taken into account. Using merger trees extracted from the dark matter simulations in combination with MEAM, we predict the average assembly histories of galaxies, separating into star formation within the galaxies (in-situ) and accretion of stars (ex-situ). Our main results are: The peak star formation efficiency decreases with redshift from 23 per cent at z = 0 to 9 per cent at z = 4 while the corresponding halo mass increases from 10 11.8 M⊙ to 10 12.5 M⊙. The star formation rate of central galaxies peaks at a redshift which depends on halo mass; for massive haloes this peak is at early cosmic times while for low-mass galaxies the peak has not been reached yet. In haloes similar to that of the Milky-Way about half of the central stellar mass is assembled after z = 0.7. In low-mass haloes, the accretion of satellites contributes little to the assembly of their central galaxies, while in massive haloes more than half of the central stellar mass is formed ex-situ with significant accretion of satellites at z < 2. We find that our method implies a cosmic star formation history and an evolution of specific star formation rates which are consistent with those inferred directly. We present convenient fitting functions for stellar masses, star formation rates, and accretion rates as functions of halo mass and redshift.

read more

Citations
More filters
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
Journal ArticleDOI

Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies

TL;DR: In this paper, supermassive black holes (BHs) have been found in 85 galaxies by dynamical modeling of spatially resolved kinematics, and it has been shown that BHs and bulges coevolve by regulating each other's growth.
Journal ArticleDOI

The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

TL;DR: In this article, a robust method to constrain average galaxy star formation rates, star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass is presented.
Journal ArticleDOI

Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

TL;DR: The Illustris Project as mentioned in this paper is a series of large-scale hydrodynamical simulations of galaxy formation, which includes primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei.
References
More filters
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical Summary

Donald G. York
- 27 Jun 2000 - 
TL;DR: The Sloan Digital Sky Survey (SDSS) as mentioned in this paper provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the Universe: a photometrically and astrometrically calibrated digital imaging survey of pi steradians above about Galactic latitude 30 degrees in five broad optical bands.
Journal ArticleDOI

The Sloan Digital Sky Survey: Technical summary

Donald G. York, +151 more
TL;DR: The Sloan Digital Sky Survey (SDSS) as discussed by the authors provides the data to support detailed investigations of the distribution of luminous and non-luminous matter in the universe: a photometrically and astrometrically calibrated digital imaging survey of π sr above about Galactic latitude 30° in five broad optical bands to a depth of g' ~ 23 mag.
Related Papers (5)