scispace - formally typeset
Open AccessJournal ArticleDOI

Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.

TLDR
Ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas.
Abstract
Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades

TL;DR: Results show distinct declines of sulfate and nitrate depositions and increases of precipitation pH in northeast America and central and east Europe, but not in Asia during 1999 and 2018, which may reflect the long-term effort of pollutant emission controls.
Journal ArticleDOI

Characterizing the influence of highways on springtime NO2 and NH3 concentrations in regional forest monitoring plots.

TL;DR: Epiphytic foliose lichen richness decreased with increasing NO2 and NH3, but vascular plant richness was positively related to estimated springtime No2 andNH3, and normalized plant/lichen N concentrations were positively correlated with estimated Springtime NO2
Journal ArticleDOI

The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L.

TL;DR: The results indicated that nutrient availability impacts pollen grain development, and male plants growing in nutrient-rich environments appear to compensate for the lower quality of produced pollen grains by producing a higher number of male cones and thus a greater quantity of pollen.
Journal Article

Trends in EU nitrogen deposition and impacts on ecosystems

TL;DR: An overview of the achievements and the current state of knowledge on reactive nitrogen in Europe, focusing on deposition, critical load exceedances, and modeled and measured trends can be found in this paper.
Journal ArticleDOI

Indicators of vehicular emission inputs into semi-arid roadside ecosystems

TL;DR: In this paper, the authors used three potential indicators of N enrichment to evaluate impacts of vehicle emissions on roadside ecosystems in GCNP: 1) concentration of nitrogen oxides (NOx) captured by passive air samplers, 2) natural δ15N abundance in the foliage of mature Pinon pine trees and soil N, and 3) concentrations of available inorganic N (NO3− and NH4+) in soil.
References
More filters
Journal ArticleDOI

Human alteration of the global nitrogen cycle: sources and consequences

TL;DR: In this article, a review of available scientific evidence shows that human alterations of the nitrogen cycle have approximately doubled the rate of nitrogen input into the terrestrial nitrogen cycle, with these rates still increasing; increased concentrations of the potent greenhouse gas N 2O globally, and increased concentration of other oxides of nitrogen that drive the formation of photochemical smog over large regions of Earth.
Journal ArticleDOI

Nitrogen cycles: past, present, and future

TL;DR: In this paper, the authors compared the natural and anthropogenic controls on the conversion of unreactive N2 to more reactive forms of nitrogen (Nr) and found that human activities increasingly dominate the N budget at the global and at most regional scales, and the terrestrial and open ocean N budgets are essentially dis-connected.
Book

Alpine plant life

TL;DR: In this article, a taxonomic index (genera) of alpine plants is presented, with a brief review of water relations and water relations of alpin plants in the alpine life zone.
Related Papers (5)