scispace - formally typeset
Open AccessJournal ArticleDOI

Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis.

TLDR
Ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas.
Abstract
Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems

TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.
Journal ArticleDOI

Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe

TL;DR: It is shown that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century and if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.
Journal ArticleDOI

Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use

TL;DR: If the lowest loss and waste percentages achieved in any region in each step of the FSC could be reached globally, food supply losses could be halved and there would be enough food for approximately one billion extra people.
BookDOI

Global Energy Assessment: Toward a Sustainable Future

TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper brings together over 300 international researchers to provide an independent, scientifically based, integrated and policy-relevant analysis of current and emerging energy issues and options.
References
More filters
Journal ArticleDOI

Nitrogen and sulfur deposition on regional and global scales:a multimodel evaluation

TL;DR: This paper used 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces.
Journal ArticleDOI

The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems

Frank S. Gilliam
- 01 Nov 2007 - 
TL;DR: The herb layer has a significance that belies its diminutive stature and can provide important information regarding the site characteristics of forests, including patterns of past land-use practices.
Journal ArticleDOI

Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.

TL;DR: Results of the first multi-decadal experiment to examine the impacts of chronic, experimental nitrogen addition as low as 10 kg N ha-1 yr-1 above ambient atmospheric nitrogen deposition find that this chronic low-level nitrogen addition rate reduced plant species numbers by 17% relative to controls receiving ambient N deposition.
BookDOI

Seasonally dry tropical forests

TL;DR: The world's dry forest heterogeneity of structure and function is shown regionally, and biogeographic patterns differ from those of wet forests, as does the spectrum of plant life-forms in terms of structure, physiology, phenology and reproduction.
Related Papers (5)