scispace - formally typeset
Journal ArticleDOI

Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system

Reads0
Chats0
TLDR
In this article, the authors investigated the behavior and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle-water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components.
About
This article is published in Applied Thermal Engineering.The article was published on 2007-06-01. It has received 575 citations till now. The article focuses on the topics: Nanofluid & Heat transfer enhancement.

read more

Citations
More filters
Journal ArticleDOI

Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency

TL;DR: In this paper, a heat pipe with de-ionic water, alcohol, and nanofluids (alcohol and nanoparticles) was fabricated from the straight copper tube with the outer diameter and length of 15, 600 mm, respectively.
Journal ArticleDOI

Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow

TL;DR: In this article, the authors present results of experiments on thermal conductivity, viscosity and Turbulent heat transfer behavior of Magnesium Oxide-water nanofluid in a circular pipe, where the volume fraction of nanoparticles in the base fluid is less than 1% (low concentration).
Journal ArticleDOI

Review of micro- and mini-channel heat sinks and heat exchangers for single phase fluids

TL;DR: In this paper, a review of micro-and minichannel heat exchangers as heat sinks and heat exchanger has been presented, and the persisting lacunae of this technology drawn from the review have been pointed out.
Journal ArticleDOI

Electronics cooling with nanofluids: A critical review

TL;DR: In this article, the authors reviewed the use of nanofluids in electronics cooling considering several aspects such as liquid block type, numerical approach, nanoparticle material, energy consumption, and second law of thermodynamics.
Journal ArticleDOI

A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids

TL;DR: A review of the physical mechanisms proposed to explain the thermal conductivity of nanofluids is presented in this article, where the authors discuss some controversial issues such as data inconsistencies, the sufficiency and suitability of classical and new mechanisms, and the discrepancies between experimental data and model predictions.
References
More filters
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Anomalous thermal conductivity enhancement in nanotube suspensions

TL;DR: In this paper, the authors have produced nanotube-in-oil suspensions and measured their effective thermal conductivity, which is anomalously greater than theoretical predictions and is nonlinear with nanotubes loadings.
Journal ArticleDOI

Conceptions for heat transfer correlation of nanofluids

TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.
Journal ArticleDOI

Thermal Conductivity of Nanoparticle -Fluid Mixture

TL;DR: In this paper, the authors measured the effective thermal conductivity of mixtures of Al 2O3 and CuO, dispersed in water, vacuum pump, engine oil, and ethylene glycol.
Related Papers (5)