scispace - formally typeset
Journal ArticleDOI

Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system

Reads0
Chats0
TLDR
In this article, the authors investigated the behavior and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle-water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components.
About
This article is published in Applied Thermal Engineering.The article was published on 2007-06-01. It has received 575 citations till now. The article focuses on the topics: Nanofluid & Heat transfer enhancement.

read more

Citations
More filters
Journal ArticleDOI

A review on applications and challenges of nanofluids

TL;DR: It has been found nan ofluids have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional fluids, which can be considered as one of the key parameters for enhanced performances for many of the applications of nanofluids.
Journal ArticleDOI

A review of the applications of nanofluids in solar energy

TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Journal ArticleDOI

Applications of Nanofluids: Current and Future:

TL;DR: In this article, the authors describe suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations, i.e., at nanoparticles' concentrations.
Journal ArticleDOI

Enhancement of heat transfer using nanofluids—An overview

TL;DR: A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics.
Journal ArticleDOI

An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime

TL;DR: In this paper, the heat transfer coefficient and friction factor of the TiO 2 -water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally.
References
More filters
Journal ArticleDOI

Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. dispersion of al2o3, sio2 and tio2 ultra-fine particles

H Masuda, +2 more
- 01 Jan 1993 - 
TL;DR: In this paper, the authors proposed a new algorithm called Al2O3, which is based on the SiO2-2-SiO3 algorithm, and showed that it is more efficient than SiO3 and TiO2.
Journal ArticleDOI

Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement

TL;DR: In this paper, an experimental correlation for the thermal conductivity of Al2O3 nanofluids as a function of nanoparticle size over a wide range of temperature (from 21 to 71°C).
Journal ArticleDOI

Heat transfer enhancement by using nanofluids in forced convection flows

TL;DR: In this article, the problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks.
Journal ArticleDOI

Nanofluids for thermal transport

TL;DR: In this article, the authors show that the extent of thermal conductivity enhancement sometimes greatly exceeds the predictions of well-established theories, and new theoretical descriptions may be needed to account properly for the unique features of nanofluids, such as high particle mobility and large surface to volume ratio.
Journal ArticleDOI

Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids

TL;DR: In this article, the hydrodynamic and thermal fields of a water-γAl2O3 nanofluid in a radial laminar flow cooling system were considered, and it was shown that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction.
Related Papers (5)